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Abstract

This dissertation consists of three self-contained essays on the economics of social interactions.

The �rst chapter is coauthored with Lorenzo Verstraeten. Knowing that Individuals interact with their

peers, we study how a social planner can intervene, changing these interactions, in order to achieve a

particular objective. When the objective is welfare maximization, we describe the interventions for games of

strategic complements and strategic substitutes. We show that, for strategic complements, the planner uses

resources to target central players; while she divides individuals into separated communities in the case of

strategic substitutes. We study which connections she targets in order to achieve these goals.

The second chapter is coauthored with Lorenzo Verstraeten and analyzes a model of contagion on social

network. We ask how a social planner should intervene to prevent contagion. We characterize the optimal

intervention and the cost associated. We discuss the intuition behind the choice of the planner and we

provide comparative static on the cost of intervention for di�erent type of network.

In the third chapter I develop a theoretical study about groups relationship and ask whether intragroup

cooperation crowd-out intergroup cooperation. I consider a gift-giving game where cooperation endogenously

arises, within and across groups. Cooperation is sustained through peer punishment with the help of a group

speci�c monitoring technology. I specify under which conditions cooperation crowding-out occur. I identify

two classes of equilibrium: a Sorting equilibrium where guilty players prefer to be matched outside their

group due to a less e�cient Out-Group monitoring technology, and a Non Sorting equilibrium where the

higher level of In-Group cooperation makes it more attractive for everybody. I then compare their welfare

properties and draw conclusions on optimal punishment levels.
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Chapter 1

Optimal intervention for network games

1 Introduction

We study a classical network game. Players' payo�s are a function of their own characteristics, their actions

and the actions of their peers. We ask how a social planner, with limited resources, should intervene on

the connections among players when she has in mind a particular objective. The planner might want to

implement a given outcome, in that case we show how she can achieve this goal at minimal cost; or she

might have some resources to spend, in that case we ask how she should allocate them in order to maximize

aggregate welfare.

The type of interventions we have in mind focus on changing both the absolute sum of links weight as

well as the relative weight of links. Examples of quantitative interventions could be to increase (or decrease)

the number of extracurricular activities provided in a school or neighborhood context: adding book clubs,

sport clubs, or any types of groups, both physical and virtual. The social planner can also play on the cost of

those activities to incentivize or desincentivize participation. This will likely create or destroy links between

individuals. As far as relative weight interventions are concerned, we can think of a regulator in�uencing

the partnership structure of �rms, by encouraging local links between �rms of di�erent size or di�erent

centrality in a national or global scale versus promoting networks of �rms similar in terms of characteristics.

For instance the regulator may have voice to the chapter when �nancial cross-participations of big �rms

are realized. When agents are individuals, the planner can devise policies promoting the integration of

newly arrived immigrants. The principal of a school could organize study groups where she decides their

composition. For example, Algan et al. (2015) ([3]) ran an experiment in a French university by randomly

assigning students into �rst-year groups. This design allowed to measure both the actual change in the

network structure and whether it a�ected the outcome of interest. 1

We assume that the intervention of the planner has increasing marginal cost. The more she wants to

change a connection between two individuals the larger is the marginal cost she has to pay. We �rst ask

how she could achieve, at minimal cost, a speci�c outcome for the network game. Modifying the connection

1This paper validates our assumption that in some circumstances a social planner can actually a�ect a social network.
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between two individuals changes their incentives. This a�ects the decisions of all their peers and therefore

the equilibrium of the network game. When the planner has in mind a speci�c equilibrium to implement

we describe how she should modify the network structure in order to obtain her goal at minimal cost. The

�rst set of results in Section 4 describe the interventions the planner should take and the cost she will incur.

Borrowing from the literature in computer science we manage to be very general in the results we obtain.

We provide results for directed and undirected network. We also describe what happens when we do not

allow the planner to change some connections.

Using the results in section 4 we ask how a social planner, with limited resources, can modify interactions

among players in order to maximize aggregate welfare. Galeotti, Golub, Goyal (2018) ([22]), GGG from

now on, address the same question. However, they focus on how a social planner should change players'

incentives. More precisely the intervention targets individual private values. We allow the social planner

to intervene on the network structure instead. Following GGG, we distinguish two kind of network games.

The �rst category are games of strategic complements; in this case players are incentivized to engage in an

activity if their peers do. The second category are games of strategic substitute; in this case players players'

incentives to engage in an activity are smaller the higher is the involvement of their neighbors. As in GGG,

we draw conclusions on how qualitatively di�erent the intervention is depending on whether we play a game

of strategic complements or strategic substitutes.

We �rst try to understand which players will be more a�ected by the intervention of the planner. As in

GGG, we decompose the e�ect of the intervention on a particular system of coordinates. The orthonormal

basis obtained by diagonalizing the matrix representing the interactions between individuals. We show that

the equilibrium of the network game can be measured in terms of the singular vectors of the adjacency

matrix of the initial network This is interesting because it allows us to understand how the planner change

the players' incentives. We show that our intervention shares common features with the characteristics-

intervention problem of GGG: in game of strategic complements central players will be mostly a�ected by

the intervention; in game of strategic substitutes, instead, the incentives of neighbors are moved in opposite

directions.

In section 7 we try to analyze how the social planner a�ects the network structure. In the complement

case, we show that the decision of the planners depends on two aspects.It is important whether players

are central or not, and whether they have a high private marginal bene�t for the action or not. If central
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players tend to have high private value, then the e�ort of the planner is unambiguously directed at them.

The planner will sponsor links from and towards these players. Otherwise the result would depend on which

aspect is the most important. The substitute case is more delicate. The planner will try to eliminate links

in order to form bipartite network. 2She will try to form two group in the population. Individuals inside one

group share few link across them, while most of the links are across individuals of the two di�erent groups.

She achieves this by destroying links of low intensity.

The paper is organized as follows. Section 2 compares our with the related literature. Section 3 describes

the model. In section 4, starting from a given network structure, we depict the closest network enabling to

implement a given outcome. Section 5 exposes the planner's problem and give properties of the equilibrium

pro�le played on the new network. Section 6 provides a comparison between those properties and the results

of GGG. Section 7 provides an analysis of the changes that the network structure goes through. Section 8

concludes.

2 Literature Review

We study a model of game on networks that covers many important situations. They fall into two main

categories, as described by Bramoullé and Kranton (2016) ([14]): peer e�ects and local public goods 3.

Examples of outcomes where peer e�ects play a role range from smoking (Robalino and Macy, 2018, [41]),

obesity (Trogdon et a., 2008, [44]), school achievement (Boucher et al., 2014, [8]), delinquent behaviors

(Glaeser et al., 1996, [24], to retirement savings (Saez and Du�o, 2003, [19]). 4 In all those situations,

I am more likely to engage in an activity if my peers do. Those games are called games of strategic

complementarities. On the contrary local public goods games exhibit strategic substituability. I am less

likely to contribute to a non-excludable good if my peers do and I can bene�t from their contributions

at zero cost. Bramoullé and Kranton, 2007 ([13]) depicts various interactions of this type. For instance

information and innovation are often non-excludable. If my friends engage in information acquisition on

a new consumption good, I may take advantage of it. Research and development expenses in enterprise

generate innovations that also pro�t connected partners. Another dimension of technological spillovers is

2In graph theory, a bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets U and
V such that every edge connects a vertex in U to one in V.

3we abstract from the third topic they address, technology adoption, as adapting our model to discrete decisions is left for
future work)

4Bramoullé et al., 2009, [11], and Boucher and Fortin, 2016, [9] provide interesting studies of peer e�ects with a focus on the
associated econometrics challenges.
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geography, as evidenced by Bloom et al., 2013, ([6]). A last example is what the literature refers to as crime

games. Ballester et al. , 2010 ([4]) quote the criminology literature to support their assumption that criminal

skills are mostly learnt through peers, and thus there is spillover of crime activities from one individual to his

connections. In all those examples, the exact structure of the network matters and the aggregate outcome

is relevant to policy makers.

Our work represents a new application of the computer science literature on nearest matrices. Higham,

2000 ([27]) proposes answers to di�erent mathematical problems searching for a matrix with speci�c proper-

ties that is as close as possible to an initial matrix deprived of this property, where di�erent closeness metrics

are possible. We provide a speci�c application of the nearest matrix problem by de�ning the network struc-

ture through its adjacency matrix and interpreting the nearest matrix solving an adequate optimization

problem as the adjacency matrix of the desired network structure.

Finally, our work contributes to the literature on optimal strategy in the presence of social interactions.

Zenou, 2016 ([12]) provides, among other things, a review of the literature on network intervention in

games. Among the economics literature we quote other recent works: Fainmesser and Galeotti, 2016 ([21]),

Akbarpour, Malladi, and Saberi, 2017 ([2]), Banerjee, Chandrashekhar, Du�o, and Jackson, 2016 ([5]),

Candogan, Bimpikis, and Ozdaglar, 2012 ([16]). Other disciplines investigates the topic. In marketing and

computer science, the problem is often whom to target: Borgatti, 2006 ([7]), Kempe, Kleinberg, and Tardos,

2003 ([30]).
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3 The Model

3.1 The setup

We study a game where n players are located on a directed network described by the weighted adjacency

matrix G ∈ Mn,n. 5 The set of player is called N = 1, . . . , n. The element gij of G represents how strong

the connection between players i and j is. We impose gij ≥ 0 for all i, j.

Each player i chooses an action ai from R+. We call a ∈ Rn+ the vector containing the action pro�le of

all the players: a = (ai)i∈N .

The payo�s to individual i are given by:

Wi(a) = biai −
1

2
a2
i + βai

∑
j∈N

gijaj

where bi ∈ R∗+ is an individual-speci�c characteristic measuring individual i's marginal return of the

direct e�ect of his action. We call b the vector containing the characteristics of the n players. Each player

incurs a quadratic cost. Finally, each player's payo�s are a�ected by the interaction between his own action

and the action of his connections. If β is positive, actions are strategic complement, whereas if β is negative

they are strategic substitutes.

For notation purposes we call A the following transformation of the network structure:

A ≡ I − βG (3.1)

3.2 Equilibrium

We impose the following assumption:

Assumption 1. The spectral radius of βG is less than 1.

Under assumption (1), Bramoullé, Kranton and D'Amours (2014) [15] shows that there exists a unique

equilibrium a∗ for the network game described above. Furthermore the equilibrium satis�es the following

system of linear equations:

[I − βG]a∗ = b (3.2)

5For some of our results we allow gii to be di�erent from 0, with the interpretation that it is a factor that in�uence the cost
of player i when he chooses action ai. In terms of the network structure this is equivalent to assume the presence of self-loops.
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Assumption (1) ensures that I − βG is invertible. Hence we can write

a∗ = [I − βG]−1b

4 Closest network structure to implement a chosen vector of actions

We assume that the social planner can intervene to change the structure of the network. She could do this

by changing the intensity of any link across players. We �rst ask how she should do it if there is a speci�c

action pro�le ā that she wants to implement at minimal cost. We make the following assumption about the

cost she incurs to alter the network:

Assumption 2. Changing the structure of the network from G to G∗ has a cost of ||G∗ − G||F , where

||M ||F =
√∑

ijm
2
ij is the Frobenius norm of M.

The previous assumption captures the idea that the social planner can modify the interaction between

i and j at a convex cost. The planner faces increasing marginal costs of intervention. The Frobenius norm

can be seen as an extension of the euclidean norm to Rn×n.

In order to determine how the social planner can reach her goal we rely on important results from

the computer science's literature. 6. Those results focus on �nding the closest matrices, satisfying some

properties, to a given one.

De�nition 1. We call Q(y, x) the set of matrix quotients of y by x, with y, x ∈ Rn:

Q(y, x) = {M ∈ A|Mx = y} (4.1)

where A ⊆Mn,n is a set of matrices with some desirable properties.

De�nition 2. We call µx,A(y) the minimal cost of altering the matrix A so that the resulting matrix belongs

to Q(y, x):

µx,A(y) = min
E∈Mn,n

{||E||F : (A+ E) ∈ Q(x, x) ∩ A} (4.2)

where A ⊆Mn,n is a set of matrices with some desirable properties.

6see Higham (2000) [27].
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Higham, 2000 ([27]) reviews results of the computer science literature that solves the minimization prob-

lem (4.2) for di�erent constraints on the type of matrices to work with (constraints de�ned in the set A).

This is of interest for the problem at hand as the equilibrium condition (3.2) makes our problem equivalent

to the minimization problem (4.2) with A = I − βG, x = b and y = ā.

We focus on the three types of constraints that we consider the most relevant: the unconstrained case,

the case where the starting network is undirected and we wish to reach an undirected network as well, and

the case where we want to preserve some sparseness properties of the network.

4.1 Case 1: Unconstrained intervention

The �rst type of intervention we consider is one were we don't impose any constraint to the planner. A

given initial network is given and she can change any connection at a cost speci�ed in Assumption 2. We

will provide a closed form solution to the problem of the planner and speci�es the cost that is associated to

the intervention

For simplicity, we are now using the notation A de�ned in equation (3.1). Not imposing any condition

on the intervention of the planner translates in the language of the previous de�nitions in A =Mn,n. The

following proposition gives us the result:

Proposition 1. The least costly intervention such that the action pro�le ā is played in equilibrium in the

game played on the transformed network is:

A+ Emin(ā) (4.3)

with

Emin(ā) =
(b−Aā)āT

āT ā
(4.4)

and this closest matrix is reached at a cost of:

µb,A(ā) =
||b−Aā||
||ā||

(4.5)

Note that ||.|| denotes the euclidean norm of Rn.
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Proof. We �rst quote the following lemma, which is a result coming from the section 8 of Higham, 2000

([27]):

Lemma 1. Given y, x ∈ Rn, A ∈Mn,n, the following minimization problem:

min
E∈Mn,n

{||E||F : (A+ E) ∈ Q(x, x)}

admits Emin as a solution with

Emin =
(y −Ax)xT

xTx

and reach µx,A(y) as minimum with

µx,A(y) =
||y −Ax||
||x||

This result tells us how to change a matrix in the sense of minimizing the Frobenius norm of the di�erence

between the initial and the �nal matrix, subject to the matrix belonging to Q(y, x).

The proof of Proposition (1) is a direct application of this lemma for y, x = ā, b.

The following corollary simply uses (3.1) to go from the transformed matrix of A to the transformed

matrix of G:

Corollary 1. The new network structure in the modi�ed game is:

G(ā) = G− 1

β
Emin(ā)

reached at a cost of
||b− (I − βG)ā||

||ā||.

Remark 1. Mathematically Emin is what the planner adds to A to reach the transformed matrix. That

is why we call Emin the optimal intervention. The �rst thing to note is that the matrix Emin is of rank 1.

Therefore we say that the planner's optimal intervention is a rank-1 intervention, that is of low computational

complexity. This is true independently of the initial condition. The second thing to note is that the optimal

intervention Emin is a priori non symmetric; this is the case even when the initial matrix is symmetric.

With this type of intervention, we are not constraining the social planner in any way. This is something

that might not be desirable in some situations. When we start from an undirected network, represented
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by a symmetric adjacency matrix, it may be questionable to reach a directed network (with an asymmetric

adjacency matrix) as the outcome of the planner's optimal intervention. One desirable property that we

might ask is the preservation of symmetry.

4.2 Case 2: Symmetric intervention

In this case A = {M ∈ Mn,n such that M = MT }. The following results is another direct application of

Higham, 2000 ([27]):

Proposition 2. The closest matrix - in the Frobenius norm - in A = {M ∈ Mn,n : M = MT } to A such

that the action pro�le ā is played in the game played on the transformed network is:

A+ ESym
min (ā) (4.6)

with

ESym
min (ā) =

(b−Aā)āT + āT (b−Aā)T

āT ā
− (b−Aā)T ā

āāT

āT ā
(4.7)

Remark 2. 7 -The intervention of the planner is a rank-2 matrix -It is possible to show that the cost of

intervention µSym is close to the cost of the intervention without constraint

µ <= µSym <=
√

2µ

4.3 Case 3: Sparse intervention

In some situations the planner might not be able to modify some features of the network. For example she

might not be able to create a link between player ĩ and j̃. One important case is when we do not allow for

self-loops, that is gii = 0, for any i.

Let Y be a matrix such that yij ∈ {0, 1}, ∀i, j. We de�ne the following set:

De�nition 3.

S2(Y ) = {M ∈Mn,n such that Mij = 0 if Yij = 0}
7See
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From Higham, 2000 ([27]) we know that, given Y and S2 the solution to the minimization problem (4.2)

with A = S2(Y ) is:

ESpmin(ā) =
∑
i=1..n

1

(āTi ā)
εTi (b−Aā)εis

T
i

where āi ∈ Rn, with j−th element āi(j) de�ned as:

āi(j) =

 ā(j) if Yij = 1

0 if Yij = 0

For example we want to study the case where the initial and post-intervention do not have self-loops (

that is akk = 0 for all k), we de�ne the restrictions matrix:

B =



0 1 1 ...

1 0 1 ...

...

... 1 1 0


Consequently we get:

ESpmin(ā) =



b1−ε1Aā∑
i6=1 a

2
i

0 0 ...

0 b2−ε2Aā∑
i6=2 a

2
i

0 ...

...

... 0 0 bn−εnAā∑
i6=n a

2
i





0 a12 a13...

a21 0 a23 ...

...

... an,n−2 an,n−1 0


Remark 3. This intervention is a rank-n intervention. As noted in Dennis and Schnabel, 1979 ([18]) this

type of correction is of no computational signi�cance and can be made "one row at the time". Column k of

the intervention is proportional to the non-zero entries to the objective equilibrium pro�le k-th component.

Dennis and Schnabel, 1979 ([18]) and other work in the computer science study other interesting case of

A. In the next section we focus on studying a problem that we consider of particular interest: How should

a planner, with a given budget, intervene on the network structure in order to increase total welfare.
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5 Closest network structure that maximizes welfare

In the previous section we speci�ed how a social planner can implement an equilibrium pro�le at minimal

cost. While this might be of interest per se, in this section, we will use the results we obtained to address

an important policy question: how should the social planner allocates resources to maximize total welfare.

5.1 The planner's problem

The goal of the social planner is to maximize aggregate welfare knowing that agents are utility-maximizers

and that they will play the Nash equilibrium a∗ ∈ Rn of the game described in the model. To reach this

goal the social planner can intervene on the network structure provided she respects a cost constraint. Given

A ∈Mnn (as de�ned in (3.1) as a function of the initial network structure G), a budget C > 0, and a vector

of characteristics b ∈
(
R∗+
)n
, the planner's problem P[A,C, b] is the following:

max
E∈Mnn

∑
i∈N

Wi [a∗(E)]

s.t. [A+ E]a∗(E) = b,

||E||2F ≤ C

( P[A,C, b])

where a∗(E) is the Nash equilibrium of the game played on the transformed matrix A+ E.

5.2 Equilibrium pro�le's reaction to planner's intervention

Even if the solution to problem ( P[A,C, b]) would be very sensible to the initial conditions, we try to describe

what is the general idea behind the planner's intervention. In particular we will show how the equilibrium

of the network game moves after intervention. This will give us an idea of which player will be more a�ected

and why. We will �rst rewrite the problem of the planner in a equivalent form. After we will recall some

notions of matrix algebra that will use in Proposition 3 to get our result.

We use the result of proposition (1) to express the problem of the planner in ( P[A,C, b]):

Given b ∈ Rn, A ∈Mn,n, C > 0,

11



max
a∈Rn

||a||2

2

s.t. C||a||2 − ||Aa− b||2 ≥ 0

( P2[A,C, b])

We used a classical result of the quadratic cost network game literature, for which at the Nash equilibrium

a∗: 8

W =
∑
i∈N

Wi(a
∗) =

||a∗||2

2
(5.1)

A solution to ( P2[A,C, b]) exists as the objective function is continuous and the constrained set is

compact. Applying the extreme value theorem yields existence of a solution. We call ã∗ a solution of

( P2[A,C, b]).

The idea is to compare the equilibrium of the initial game, with the equilibrium of the game after the

intervention of the planner. The equilibria we want to compare are n-dimensional vector and therefore a

metric for comparison is di�cult to obtain. What we will do is to choose an appropriate set of coordinates

and try to compare the projections of the two equilibria on these. In order to do this we will have to recall

some notion of matrix algebra.

Singular value decomposition In order to analyze the changes that the equilibrium action pro�le is

going through when the planner's intervention takes place, we introduce a common tool of linear algebra,

the singular value decomposition. Given a matrix M ∈ Mn,n there exists a factorization, called singular

value decomposition (SVD) of M of the form

M = UΣV T ,

where U and V are unitary matrices ofMn,n and Σ is a diagonal matrix with non-negative real numbers on

the diagonal. The diagonal entries {si}i of Σ are known as the singular values of M , the column of U (or

V ) are known as left (or right) singular vectors of M .

8see Bramoullé, Kranton and D'Amours, 2014, [15]
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Case of symmetric positive de�nite matrices If M is symmetric and positive de�nite, its singular

value decomposition coincides with its eigendecomposition. In this case U = V , the column of the matrix

U are the eigenvectors of M and the singular values are its associated eigenvalues. The advantage of the

singular value decomposition over the eigendecomposition is that it always exists.

Let us consider the singular value decomposition of A:

A = UΣV T (5.2)

with ui (respectively vi) the i-th column of U (respectively V ), and si the i−th singular value, when

ranking the singular values in decreasing order. uij (respectively vij) is the j−th element of the vector ui

(respectively vi). Let pi be the projection of the initial equilibrium action pro�le a∗ (before intervention) on

vi and p̃i the projection of the new action pro�le ã∗ (after intervention).

We add an assumption about the size of the budget. This condition is su�cient for our next result to

hold but not necessary.

Assumption 3.

C <

(
min
i
s2
i

)2

n∑
i=1

s2
i

The following theorem allows us to rank the ratio of any two projections before and after intervention.

Theorem 1. Under assumption 3, for i, j = 1, . . . , n, i < j:

pi
pj
≤ p̃i
p̃j

(5.3)

Proof. See section 9.1 of appendix. For the version where symmetry is imposed to the transformed network,

see section 9.3 of appendix.

The ratio of the projections of the resulting action pro�le on di�erent right singular vectors of A tells us

how close the action pro�le is from one right singular vector relative to another one. By comparing this ratio

before and after intervention, we understand whether the action pro�le moves towards one right singular

vector relative to another one with the intervention. The next corollary formalizes this idea.

13



For any a ∈ Rn, let θi(a) be the angle between the vector a and vi in the 2-dimensional subspace of Rn

spanned by a and vi .

Corollary 2. Under assumption 3, for i, j = 1, . . . , n, i < j:

θi(a
∗)

θj(a
∗)
≤ θi(ã

∗)

θj(ã
∗)

(5.4)

Proof. See appendix.

Corollary (2) means that the action pro�le moves towards vi and away from vj , for all i < j.

This result holds in the particular case when the singular value decomposition is the eigendecomposition

as well as in the general case when it is not. But the interpretation of the result is easier when the {vi}i are

the n eigenvectors of A. In this case it exists the eigenvectors of A and of G are the same and because the

eigenvectors of an adjacency matrix have a nice interpretation in terms of network structure, we can give an

interpretation to our result.

Remember the relationship between A and G from (3.1):

A = I − βG

As I is a diagonal matrix, the correspondence between eigenvectors and eigenvalues of the two matrices

is straightforward and depends on the sign of β. Let's call {λi}i the eigenvalues of A and {λi(G)}i the

eigenvalues of G.

Lemma 2.

λi(G) =
1− λi
β

with vi the associated eigenvector (5.5)

and the n eigenvectors {v̄i}ni=1 of G are the eigenvectors of A ranked:

1. If β > 0: in the opposite order as {vi}ni=1

2. If β < 0: in the same order as {vi}ni=1

Proof. From (3.1) we get the following equivalence:

Avi = λiv
i ⇔ Gvi =

1− λi
β

vi (5.6)
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The results directly follows.

The order of the eigenvectors refers to the orders of their associated eigenvalues ranked in decreasing order,

from the largest to smallest. The eigenvectors of the adjacency matrix capture important characteristic of

the network. We will use these to interpret the result on the projections of the equilibria. Each component

of the �rst eigenvector of the adjacency matrix represents the eigenvector centrality of the corresponding

player. A high eigenvector centrality means that a node is connected to many nodes who themselves have

high centrality. The higher the j−element of the �rst eigenvector is, the more central the j−th player is.

The last eigenvector, instead, in a bipartite network, assign negative values to players in one of the two sets

and positive values to the one in the other set.9 We put together corollary 2 with lemma 2 to give a result

that has a clear interpretation in terms of network structure:

Proposition 3. Under assumption 3, for i, j = 1, . . . , n, i < j:

1. If β > 0:

The equilibrium responds to the planner's intervention moving from the higher-ranked to the

lower-ranked eigenvector in the subspace of Rn spanned by those two eigenvectors.

2. If β < 0:

The equilibrium responds to the planner's intervention moving from the lower-ranked to the higher-

ranked eigenvector in the subspace of Rn spanned by those two eigenvectors.

Figure (1) is a graphical representation of corollary (2), for i = 1, j = 2 in the case of strategic comple-

ments. Proposition (3) says that more central agents (of the initial network), in this case player 1, as his

component of the �rst eigenvector is larger, increase more their action relative to another weighting of the

agents (the weighting described by v̄2 for instance). This result tells us that the planner is changing the

incentives in the game in such a way that central players are the one more a�ected. They will respond more

than others to the intervention. We see the decision of the planner to target central player as a result of

the importance of these players typical of network games of strategic complements. When a central player,

after intervention, increases is action he incentivizes the players that are connected to him to increase their

action as well, bringing bene�ts to all the populations. The more a player is central, the more his action is

9A bipartite network is a network whose nodes can be divided into two disjoint and independent sets U and V such that
every edge connects a vertex in U to one in V.
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a∗

θ1 (a
∗)

θ2 (a
∗)

p1

p2

v2

v1

(a) Before intervention

ã∗

θ1 (ã
∗)

θ2 (ã
∗)

v1

v2

p̃1p̃2

(b) After intervention

Figure 1: Change in the relative distance between the action pro�le and the �rst two right singular vectors
of A

important to incentivize other players. In section 7 we will try to investigate how the social planner actually

targets central players, but �rst we want to explain what happens in game of strategic substitutes.

When we consider a game of strategic substitutes the two graphs of Figure 1 follow the opposite order. To

get an interpretation we focus on the last eigenvector of the network. Proposition 3 says that the equilibrium

will tend to mirror the last eigenvector (with respect to any other eigenvector) after the intervention of the

planner. To �x ideas consider Figure (2). Here all the nodes are connected but some links are stronger (dark

blue) and form a biparite graph. The last eigenvector of the adjacency matrix will have positive entries for

the red nodes and negative for the green. Proposition 3 is telling us that the social planner is changing the

incentives of red and green players in opposite directions. Red players, after interventions will increase their

actions while green will decrease them. Changing actions of closed neighbors in opposite direction increases

total welfare. If the planner would instead move incentives in the same direction an increase in the action of

a player would crowed out the incentive of his neighbor. In section 7 we try to understand how the planner

reaches her goal. Before, in the next section, we will compare our result to GGG.

6 Comparison with GGG

We now want to compare our result with the proposition 1 of GGG. We focus on the special case where

the singular value decomposition is the eigendecomposition. The results follow through in terms of singular

vectors. We �nd that the changes in the action pro�le have the same direction in terms of eigenvectors,

though the amplitude of the changes is surely di�erent.
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Figure 2: Bipartite Network
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De�nition 4. qi(G, b) is the projection of b on the i-th eigenvector of G.

The result of proposition 1 of GGG is:

1. If β > 0,
ql(G, bnew)− ql(G, b)

ql(G, b)
is weakly decreasing in l (6.1)

2. If β < 0,
ql(G, bnew)− ql(G, b)

ql(G, b)
is weakly increasing in l (6.2)

where b is the initial vector of individual characteristics, and bnew is the new vector, after intervention

(remember that they intervene on b when we intervene on G).

In order to compare their result and our result, let us rename our projections:

De�nition 5. pi(b,G,C) is the projection of the action pro�le solution of ( P2[A,C, b]), with parameters

b ∈ Rn, G ∈Mn,n, C > 0, on the i-th eigenvector of G

Simple algebra yields the following theorem:

Theorem 2. For i < j:

(1) (6.1) implies

pi(b,G,C)

pj(b,G,C)
≤ pi(bnew, G,C)

pj(bnew, G,C)
(6.3)

(2) (6.2) implies

pi(b,G,C)

pj(b,G,C)
≥ pi(bnew, G,C)

pj(bnew, G,C)
(6.4)

In words, it means that the results they �nd when β > 0 and β < 0 leads to the same direction of the

change in the action pro�le a∗ with respect to any two eigenvectors of G as in our result of proposition 3

. Note that the inequalities (6.3) and (6.4) are inequalities, telling us nothing about the amplitude of the

variation. But the variation in a∗ (our object of interest as it determines aggregate welfare) goes in the same

direction in both cases of β.

An open questions remains which method yields the highest welfare gain at a given cost C.
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7 Network structure analysis

In section 6 we saw how the social planner change the incentives of the players, studying how the equilibrium

moves after the interventions. In this section we want to give insights on how she actually achieves her goal,

in terms of which connections will be modi�ed and how.

Following the notations of equilibrium pro�les, we call Ã = A+ Emin (how the matrix A is transformed

after intervention) and G̃ the new network structure. As we will study the object Emin, we rename it ∆A as

it represents what is added to the matrix A in the optimal intervention. Similarly we de�ne ∆G = G̃ −G.

From the de�nition (3.1) we get:

G̃−G = − 1

β
(Ã−A) (7.1)

Therefore studying Ã−A = ∆A sheds light on the change of network structure (∆G). We starts from an

undirected network so that we can use the eigendecomposition and it will be easier to interpret the resutlts.

We study the unrestricted case as it is more tractable, meaning that we do not impose that the transformed

network is undirected too. As a consequence we study separately whether the links are targets of the planner:

1. links arriving to a set of players

2. links starting from a set o� players

Following the approach of the previous sections, we work on the projection of ∆A on the basis B of the

eigendecomposition of A:

B = {(v1v
T
1 ), (v1v

T
2 ), ..., (v1v

T
n ), (v2v

T
1 ), ..., (vnv

T
1 ), ..., (vnv

T
n )} (7.2)

The decomposition is a sum of n2 elements:

∆A =
∑

i=1,...,n,j=1,...n

µi,j

[
vi
(
vj
)T ]

(7.3)

We de�ne the following two objects of interest:
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De�nition 6. For i = 1, . . . , n:

SI(vi) =

n∑
k=1

(
vi
)T

∆Avk

SO(vi) =

n∑
k=1

(
vk
)T

∆Avi

(7.4)

SI(vi) is the sum of the coe�cients of decomposition (7.3) on the basis elements of B with vector vi as

left vector of the outer product. With this quantity we want to capture how relevant is the eigenvector vi

to explain the structure of ∆A (the in-links are captured with SI(vi) and the out-links with SO(vi).

Proposition 4. When C → 0, for any i, j:

SI(vi)

SI(vj)
=

(
1− βλj(G)

1− βλi(G)

)2
vTi b

vTj b
(7.5)

and

SO(vi)

SO(vj)
=

(
1− βλj(G)

1− βλi(G)

)
vTi b

vTj b
(7.6)

with λi(G) de�ned in equation (5.5) as a function of the eigenvalues of A in the following way:

λi(G) =
1− λi
β

where λi(G) is:

1. the (n− i+ 1)−th largest eigenvalue of G if β > 0

2. the i−th largest eigenvalue of G if β < 0

Proof. See appendix

Proposition 4 gives us information about ∆A but we are eventually interested in ∆G. Recalling (7.1),

we notice that ∆G and ∆A are proportional, and thus :
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n∑
k=1

(
vi
)T

∆Gvk

n∑
k=1

(
vj
)T

∆Gvk
=
SI(vi)

SI(vj)
(7.7)

As a consequence we directly use the ratio
SI(vi)

SI(vj)
to inform us about ∆G. To avoid ambiguity, let us call

ri the i−th largest eigenvalue of G regardless of the sign of β, and wi its associated eigenvector. Therefore,

when β > 0, r1 = λn(G) and rp = λn−p+1(G). Those notations are merely relabeling to provide clearer

intuition of proposition 4 , as when β > 0, λi(G) is the n− i+ i-th largest eigenvalue of G, but vi stays its

associated eigenvector, that is vi = wn−i+1. We can then rewrite the expressions of proposition 4 in a more

intuitive way in the following corollary.

Corollary 3. When C → 0, for p > q:

SI(wq)

SI(wp)
=

(
1− βrp
1− βrq

)2 wTq b

wTp b
(7.8)

and

SO(wq)

SO(wp)
=

(
1− βrp
1− βrq

)
wTq b

wTp b
(7.9)

Interpretation for strategic complements (β > 0) In the case of strategic complements we would like

to explain how the social planner incentivize central players, the result we obtained from section 6. We call

W (p) =
wT1 b

wTp b
(7.10)

and R(p):

R(p) =

(
1− βrp
1− βr1

)
(7.11)

We can thus rewrite the results of corollary 7.8, when q = 1 as:

SI(w1)

SI(wp)
= R(p)2W (p) and

SO(w1)

SO(wp)
= R(p)W (p) (7.12)

The larger is the �rst of the ratio in (7.14) the more the planner is increasing the intensity of links toward
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central players. The larger the second of the two ratio in (7.14) the more the planner is increasing the

intensity of links from central players to the other individuals. We can now study the two ratio and make

some interesting observations:

• From assumption 1 we know that both the numerator and the denominator of R(p) are between 0 and

1 and as r1 ≥ rp, as |r1 − rp| grows the more the social planner is targeting links from and towards

central players. Other thing beeing equal we can compare networks that have di�erent eigenvalues and

understand how much centrality of players has a key role in the decision of the planner.

• As R(p) ≥ 1 (strict inequality for r1 6= rp), R(p)2 grows faster than R(p) with |r1 − rp|, and thus the

ratio for in-links grows faster than the ratios for out-links.

• The inner product 〈wi, b〉 describes how high the private bene�ts of the action is for the players that

matter in the i−th direction of the network structure. For instance, w1 singles out central players and

〈w1, b〉 is high when central players have high private marginal bene�ts from the action. The more

central players have high private value for the action relative to players important according to other

the p−th dimension, the more W (p) is large. The idea is that the planner has an incentive to induce

links with players that have high private bene�ts for the action as a link with one of this player is more

valuable than a link with a similar player with lower private bene�t. In other words W (p) gives us the

relative size of externalities in the direction of the structural aspect described by eigenvector w1 versus

by eigenvector wp.

• W (p) can either be smaller or bigger than 1.

� If W (p) > 1, then Sk(w1)/Sk(wp), k = I,O are both strictly greater than 1, (this ) which means

that the planner focuses more budget on central players relative to the players singled out by the

dimension wp. The e�ects contained in the ratios R(p) and W (p) reinforce each other.

� On the other hand, if W (p) < 1, the e�ects of R(p) and W (p) go compensate each other. The

�rst ratio pushes the planner to focus on central players, but on the other hand those players do

not have a high marginal return on the action (indicated by W (p) < 1) and the planner may want

to split her budget between central players and players with high private returns.

Interpretation for strategic substitutes (β < 0) We showed in section 6 that the social planner, in

the case of strategic substitutes, moves incentive of neighbors' players in opposite directions. We try to

understand how she achieves this goal.
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We denote by R∗(q):

R∗(q) =

(
1− βrn
1− βrq

)
(7.13)

We can thus rewrite the results of corollary 7.8, when p = n as:

SI(wq)

SI(wn)
= R∗(q)2

wTq b

wTn b
and

SO(wq)

SO(wn)
= R∗(q)

wTq b

wTn b
(7.14)

As opposed to the complement case, R∗(q) ≤ 1 and decreases as the distance between rq and rn increases.

The smaller is R∗(q) the more planner lower the intensity of links players between green players and links

between red playersc in Figure (2). In this way the network will tend to become a bipartite network. Green

players will invest a lot in the action and red players will do the opposite.

8 Other Interventions

Started from the results given in Section 3, it is possible to investigate other interesting problem for the

planner, as, for example, how to modify the network in order to give a minimum utility to all the players

or how to garantee some form of equality among players or again how to increase the utility (or action) of

all the players by the same amount. The social planners, in the case where a represents e�ort might also be

interested in maximizing total e�ort. We leave these and other questions for future studies.

23



9 Appendix

9.1 Proof of theorem 1

We remind that the mathematical de�nition of the projection of any vector x ∈ Rn on the vector vi is:

projection of x on vi = 〈x, vi〉 (9.1)

The steps of the proof are the following: �rst we derive an expression for pi by using the singular value

decomposition of A. Then, we derive properties on the equilibrium pro�le after optimal intervention ã∗ by

di�erentiating the Lagrangian of the optimization problem. From there we get an expression for p̃i. Finally

we use the expressions for pi and p̃i to deliver a ranking of the ratios of projections at di�erent indices.

9.1.1 Projection of the equilibrium pro�le before intervention

The equilibrium before intervention is a vector a∗ such that

Aa∗ = b (9.2)

Pre-multiplying both sides of the equation by the vector
(
vi
)T
AT we get:

(
vi
)T
ATAa∗ =

(
vi
)T
AT b (9.3)

Right hand side of (9.3) We are now using the singular value decomposition of A: UΣV T . As(
v1, . . . , vn

)
forms an orthonormal basis of Rn, we have the following equality:

(
vi
)T
V =

[
〈vi, v1〉 〈vi, v2〉 . . . 〈vi, vn〉

]
= (eni )

T (9.4)

where eni is the i-th vector of the Euclidean basis of Rn, that is its i-th element is 1 and all its other

elements are 0. This helps us to simplify
(
vi
)T
AT :

(
vi
)T
AT =

(
vi
)T
V ΣUT = si

(
ui
)T

(9.5)

By post-multiplying by the vector of characteristics b we reach:
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(
vi
)T
AT b = si

(
ui
)T
b (9.6)

Left hand side of (9.3) (
vi
)T
ATA = si

(
ui
)T
A (9.7)

(using the equality in (9.5)). Re-using the singular value decomposition, we get:

(
vi
)T
ATA = si

(
ui
)T
UΣV T (9.8)

Similarly to (9.4) we have

(
ui
)T
U =

[
〈ui, u1〉 〈ui, u2〉 . . . 〈ui, un〉

]
= (eni )

T (9.9)

This helps us to simplify (9.8):

(
vi
)T
ATA = si (eni )

T
ΣV T = s2

i

(
vi
)T

(9.10)

By post-multiplying by a∗ we reach:

(
vi
)T
ATAa∗ = s2

i

(
vi
)T

a∗ (9.11)

Expression for the projection of a∗ on vi Putting together left-hand side and right-hand side of

(9.3), we reach an expression for
(
vi
)T

a∗, that is pi:

pi = 〈vi,a∗〉 =
(
vi
)T
a∗ =

(
ui
)T
b

si
(9.12)

Note on the symmetric case (undirected network) When the initial matrix G (and therefore A)

is symmetric:

1. vi = ui is an eigenvector of G (and therefore of A)

2. si = λi is the eigenvalue i-th of the matrix A

Hence:
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vTi a
∗ =

vTi b

λi
(9.13)

9.1.2 Projection of the equilibrium pro�le after intervention

Let us �rst derive conditions on the solution ã∗ of ( P2[A,C, b]) by writing and di�erentiating the lagrangian

L(.) of the problem.

L(a, µ) =
||a||2

2
+ µ

[
C||a||2 − ||Aa− b||2

]

∂L
∂a

(a, µ) = a+ µ2ca− µ
(
2ATAa− 2AT b

)
(9.14)

Setting this expression equal to zero we get:

(1 + 2µc)ã∗ − 2µATAã∗ = −2µAT b (9.15)

Dividing both sides by −2µ (as the constraint is binding and thus the multiplier is strictly positive) and

calling K =
1

2µ
+ c we get :

−Kã∗ +ATAã∗ = AT b (9.16)

Pre-multiplying both sides by
(
vi
)T

and directly using the results of (9.6) and (9.10), we reach

−KvTi ã∗ + s2
i

(
vi
)T

ã∗ = si
(
ui
)T
b (9.17)

and �nally we have an expression for the projection of ã∗ on the vector vi:

p̃i = vTi ã
∗ =

si
s2
i −K

(
ui
)T
b (9.18)

9.1.3 Comparing the ratio of projections on two di�erent right singular vectors

From (9.13) and (9.18) we compute the ratio of interest:

p̃i/p̃j
pi/pj

=
s2
i

s2
j

s2
j −K
s2
i −K

=
s2
i

s2
i −K

/
s2
j

s2
j −K

(9.19)
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Let's observe that assumption (3) together with the Kuhn-Tucker conditions of ( P2[A,C, b]) tells us that

s2
i −K > 0 ∀i. In order to establish this consider the FOCs of the lagrangian:

ã∗ + µ2Cã∗ − µ2ATAã∗ = −µ2AT b

Simple algebra gives:

(
1

2µ
+ C

)2

=
(Aã∗ − b)TAAT (Aã∗ − b)

||ã∗||2
=
||AT (Aã∗ − b)||2

||ã∗||2
(9.20)

Cauchy-Schwartz inequality tells us that for a matrixM ∈Mn,n, a vector x ∈ Rn, ||Mx||2 ≤ ||M ||F ||x||2.

We apply this result (note also that the Frobenius norm of a matrix and that of its transposed are the same)

to our previous equality:

(9.20)⇒
(

1

2µ
+ C

)2

≤ ||Aa
∗ − b||2||A||2

||ã∗||2
(9.21)

Besides, we know that the constraint of ( P2[A,C, b]) is binding:

||Aã∗ − b||2

||ã∗||2
= C

Therefore, plugging this into (9.21), we get:

(
1

2µ
+ C

)2

≤ C||A||2F

Which is equivalent to:

K2 ≤ C||A||2F = C

n∑
i=1

s2
i (9.22)

As K is > 0 (the lagrangian multiplier is > 0), we get the following:

K ≤
√
C

√√√√ n∑
i=1

s2
i ≤

min
i
s2
i√√√√ n∑

i=1

s2
i

√√√√ n∑
i=1

s2
i = min

i
s2
i (9.23)

where the second inequality comes from assumption (3)
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(9.23) implies, for all i:

s2
i ≥ K (9.24)

We now use this result to determine whether the ratio in (9.19) is bigger or smaller than 1. The function

f : x 7→ x
x−K is increasing in x i� x > K (which we know from (9.24)). This implies that

(9.20)⇒ p̃i/p̃j
pi/pj

> 1 i� si > sj (9.25)

In the symmetric case the projection on the left singular vectors corresponds to the projection on the

eigenvector of the adjacency matrix.

9.1.4 Proof of Corollary (2)

Corollary (2) comes directly from the fact that the projection of a∗ on vi can also be written as:

pi = 〈a∗, vi〉 = ||a∗|| ||vi|| cos θi(a
∗) (9.26)

Besides, the vectors of the family {vi}i are orthonormal, therefore the norm of each of them is 1. The

ratio of projections thus boils down to:

pi
pj

=
cos θi(a

∗)

cos θj(a
∗)

and
p̃i
p̃j

=
cos θi(ã

∗)

cos θj(ã
∗)

(9.27)

We pause a moment to consider the sign of the projections. In principle, 〈a∗, vi〉 can be either negative

or positive (depending whether the angle θi(a∗) is bigger or smaller than 90◦. We can abstract from this

sign ambiguity by "choosing" the (right) singular vector that makes the projection positive. If a vector x is

a singular vector of a matrix with norm 1, then the vector −x will also be a singular vector of this matrix

(provided we change the sign of both the left and the right singular vectors associated to the same singular

value), of norm 1 too. Therefore we choose all the right singular vectors of A such that 〈a∗, vi〉 > 0 for all

i. Then, by continuity of the inner product, for a budget small enough, 〈ã∗, vi〉 will also be positive.

Then, combining (9.27) and theorem 1 yields the desired result.

9.2 Proof of proposition 4

Step 1: expression for ã∗ From (9.16), we get:
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ã∗ =
(
ATA−KI

)−1
AT b (9.28)

(remember that K is a scalar, equal to 1
2µ − C and that the matrix ATA − KI is invertible as it is

symmetric) . Going back to the eigendecomposition of A, and taking into account that A is symmetric and

thus that A = AT , we have:

(
ATA−KI

)
= A2 −KI = V Σ2V T −KI = V


λ2

1 −K
. . .

λ2
n −K

V T (9.29)

It is then easy to compute
(
ATA−KI

)−1
:

(
ATA−KI

)−1
= V


1

λ2
1 −K

. . .

1
λ2
n −K

V T (9.30)

Finally:

ã∗ =
(
ATA−KI

)−1
V ΣV T b = V


λ1

λ2
1 −K

. . .

λn
λ2
n −K

V T b (9.31)

Step 2: expression for (b − Aã∗) Another useful factorization is the one of (b − Aã∗). Directly from

the previous result in (9.31), we get:

(b−Aã∗) = b−AV


λ1

λ2
1 −K

. . .

λn
λ2
n −K

V T b =

I − V


λ2
1

λ2
1 −K

. . .

λ2
n

λ2
n −K

V T

 b

or again
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(b−Aã∗) = V


1− λ2

1

λ2
1 −K

. . .

1− λ2
n

λ2
n −K

V T b (9.32)

Step 3: expression for
(
vi
)T

∆A vj We now compute
(
vi
)T

∆A vj for all i, j by using the two previous

steps together with (4.4) of proposition 1 (with ā = a∗):

(
vi
)T

∆A vj =
(
vi
)T (b−Aã∗)(ã∗)T

(ã∗)T ã∗
vj (9.33)

whose right-hand side is equal to:

1

(ã∗)T ã∗
(
vi
)T
V


1− λ2

1

λ2
1 −K

. . .

1− λ2
n

λ2
n −K

V T b bTV


λ1

λ2
1 −K

. . .

λn
λ2
n −K

V T vj

or again is equal to

1

(ã∗)T ã∗
−K

λ2
i −K

(
vi
)T
b bT

λj

λ2
j −K

vj

�nally we get:

(
vi
)T

∆A vj = − 1

(ã∗)T ã∗
Kλj

(λ2
i −K)(λ2

j −K)
〈vi, b〉〈vj , b〉 (9.34)

Step 4: computing SI(vi) Now we want to compute the sum SI(vi) from previous result:

SI(vi) =

n∑
j=1

(
vi
)T

∆A vj = − 1

(ã∗)T ã∗
〈vi, b〉 1

λ2
i −K

n∑
j=1

K λj

(λ2
j −K)

〈vj , b〉 (9.35)

Step 5: computing the ratio SI(v1)/SI(vp) For p = 2, . . . , n:

SI(v1)

SI(vp)
=
〈v1, b〉
〈vp, b〉

λ2
p −K
λ2

1 −K
(9.36)
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Step 6: taking the limit as C → 0 Following the previous approach, we take C → 0 and work for a

transformed network close to the initial network. We know from (9.22) that:

K2 ≤ C||A||2F = C

n∑
i=1

λ2
i

Therefore when C → 0, K → 0 too and we get:

SI(v1)

SI(vp)
=
〈v1, b〉
〈vp, b〉

λ2
p

λ2
1

(9.37)

Step 7: Ratio as a function of the eigenvalues of G The �nal step is again to transform expression

(9.41) as a function of the eigenvalues of G and not of A. Using the correspondence stated in lemma 2, we

get:

SI(v1)

SI(vp)
=
〈v1, b〉
〈vp, b〉

(
1− βλp(G)

1− βλ1(G)

)2

(9.38)

However it is to be noted that when β > 0, the order of the eigenvalues of A and G is inverted and

therefore λ1(G) is the smallest eigenvalue of G and λn(G) is the largest eigenvalue of G

Step 8: computation of SO(vi) Remember that

SO(vi) =

n∑
k=1

(
vk
)T

∆Avi

We restart from (9.34) above where we just change the index over which we sum:

SO(vj) = − 1

(ã∗)T ã∗
λj

λ2
j −K

〈vj , b〉
n∑
i=1

K

(λ2
i −K)

〈vi, b〉 (9.39)

Step 9: computing the ratio SO(v1)/SO(vp) For p = 2, . . . , n:

SO(v1)

SO(vp)
=
〈v1, b〉
〈vp, b〉

λ2
p −K
λ2

1 −K
λ1

λp
(9.40)

Following the previous approach, we take C → 0 and can thus neglect the constant K and we get:

When C → 0:
SO(v1)

SO(vp)
=
〈v1, b〉
〈vp, b〉

λp
λ1

(9.41)
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Step 10: Ratio as a function of the eigenvalues of G The �nal step is again to transform expression

(9.41) as a function of the eigenvalues of G and not of A. Using the correspondence stated in lemma 2, we

get:

SO(v1)

SO(vp)
=
〈v1, b〉
〈vp, b〉

1− βλp(G)

1− βλ1(G)
(9.42)

However it is to be noted that when β > 0, the order of the eigenvalues of A and G is inverted and

therefore λ1(G) is the smallest eigenvalue of G and λn(G) is the largest eigenvalue of G.

This proves the result.

9.3 Optimal intervention under symmetry constraint

From (4.7) we have that

Emin(ā) =
(b−Aā)āT + āT (b−Aā)T

āT ā
− (b−Aā)T ā

āāT

āT ā

Let us �rst derive conditions on the solution ã∗ of the planner's problem under symmetry constraint by

writing and di�erentiating the Lagrangian L(.) of the problem.

L(a, µ) = (aTa) + µ
[
C(aTa)2 − 2(b−Aa)T (b−Aa)aTa+ ((b−Aa)Ta)2

]
∂L
∂a

(a, µ) = a+ 2µc(aTa)a− 2µ(aTa)(2A2a− 2Ab)− 2µ(wTw)a+ 2µ(wTa)(b−Ay) (9.43)

where we pose

w ≡ b−Ay

Rearranging we get

[(1 + 2µc(aTa)− 2µ(wTw))I − 4µ(aTa)A2 − 2µ(wTa)A]a = [−4µ(aTa)A−−2µ(wTa)I]b

This give us an expression for the new equilibrium pro�le action (that we call a∗ in this section only).

Using the properties of eigenvectors-eigenvalues, as in the case examined before we get:
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a∗ = V


−4µ(a

T
a)λ1 − 2µ(w

T
a)

(1 + 2µc(a
T
a)− 2µ(w

T
w))− 4µ(a

T
a)λ

2
1 − 2µ(w

T
a)λ1

.
.
.

−4µ(a
T
a)λn − 2µ(w

T
a)

(1 + 2µc(a
T
a)− 2µ(w

T
w))− 4µ(a

T
a)λ

2
n − 2µ(w

T
a)λn

V T b
(9.44)

where λi is the i-th eigenvalue of A

Dividing numerator and denominator by 2µ(aTa), calling γ = −w
Ta
aTa

> 0 and K = 1
2µaTa

+ c − wTw
aTa

we get:

a∗ = V


2λ1 − γ

2λ2
1 − γλ1 −K

. . .

2λn − γ
2λ2

n − γλn −K

V T b (9.45)

Projecting on eigenvector vi:

a∗vi =
2λi − γ

2λ2
i − γλi −K

(vi)T b

As before I want to compare the ratio of projection on di�erent eigenvectors before and after intervention.

This boils down to the study of the function

f(λi) =
2λ2

i − γλi
2λ2

i − γλi −K

When C → 0, γ → 0 as w → 0 and K > 0. This yields the result. For K > 0, multiply by aT the

equation of the derivative of the lagrangian and divide by 2µaTa. This gives us

K = aT (2A2 − γA)(a−A−1b)

which is >0 when γ is small enough
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Chapter 2

Stopping contagion: optimal network
intervention

1 Introduction

We study contagion processes on social networks. We investigate how a social planner should optimally

intervene on the network structure to prevent them. Many welfare-relevant phenomena can be described

as contagion processes in networks. The most studied one is epidemics, in this case we investigate which

kind of prevention programs the planner should promote. Other interesting applications are the di�usion of

bad rumors and fake news, or risky behaviors such as crime and smoking. We ask in all those cases which

preventive measures the planner could take. 10

We use the Susceptible-Infected-Susceptible (SIS) model from the epidemiology literature as a convenient

way to address such processes.11 Individuals are in one of two possible states: Susceptible S or Infected I.

The probability that a susceptible individual becomes infected is increasing in the number of individuals he

interacts with who are infected. The probability that an infected individual becomes susceptible again is

exogenous and given by a parameter. This gives tractability and �ts well the epidemics example. 12 The key

characteristics of those di�usion processes is that my behavior or my state (sick or sound) may evolve over

time, and the transition from one state to the other may depend on the states of the individuals I interact

with. For instance, I am more likely to get infected by a disease if I meet individuals that are infected

themselves, and the more such individuals I meet, the more likely it becomes. The biggest the number of

my friends knowing about a rumor, the more probable it is that I learn it, and afterwards transmit it. In

coordination games, my best response is to cooperate if my friends do so and to cheat if they do. In this

environment we work on long run outcomes and study the steady-state of the system, with the interpretation

that this represents the fraction of time each individual spends in the infected state over a long period of

10The empirical literature on peer e�ects shows that teenagers are more inclined to start smoking if their friends do (Robalino
and Macy, 2018, [41]).

11see Pastor-Satorrás and Vespignagni, 2001, [39])
12It may become a limitation for other contagion processes. In the context of social conventions, the probability to switch

from one convention to another seems to depend on the convention my friends adopted in any of the two directions. We leave
the study of cases where the transition between one state to the other is symmetric across the states for future work.
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time. 13

In this classical SIS framework we ask how a social planner could intervene to prevent an outbreak.

We allow the planner to decrease the probability that an infection is transmitted when a meeting with an

infected individual occurs. A politician could promote a campaign to increase the use of protective measures

to decrease the spread of sexually transmitted diseases. Notifying social media users about dubious sources

of information could prevent the spread of fake news. All these intervention are costly, and the larger is the

intervention the higher is the cost the planner has to sustain. Of course multiple interventions constitute

possible way to stop the epidemic di�usion, so we ask how to reach our goal at minimal cost. In this way

we try to address the question of which connections are the most important for diseases' di�usion.

The �rst important contribution of the paper is the characterization of the intervention of the planner

(Proposition 1). We managed to have an analytical solution to the problem that does not require any

limitation on the initial structure of the network. This result gives the social planner a useful guidance when

deciding how to allocate resources. It is important to stress that network-nature problem like the one we

face, where we have to deal with a large amount of information, are very di�cult to solve and require a

lot of computational power. Therefore providing a closed-form solution becomes of even larger importance.

We show that mathematically, the problem corresponds to the transformation of the matrix representing

the interactions across individuals into its "closest" Negative De�nite matrix. We use some results from the

computer science literature to solve this problem. 14 Even if the interventions would di�er a lot depending

on the initial structure of the network, we argue that the planner intervenes in a systematic way. She tries to

decrease interactions across di�erent communities in the population and she focus on eliminating the disease

in each community separately.

If, on one side the result is unique in the literature for its generality, on the other side, there is an

important limitation. The optimal intervention might result in making an interaction with an infected

individual decrease the probability to spread contagion. This means that the planner's prevention program

13In these models the outcomes of interest are divided between short run and long run. We focus on the second one. It is
to be noted that the steady-state has a di�erent meaning when working on approximate versus exact networks. In the �rst
case, the system is deterministic and once the steady-state is reached, the system does not move anymore. The steady-state
then describes the fraction of individuals of each type (for instance their degree) in the infected state at each period. Of course
some individuals change state at each periods but for each type, individuals leaving the infected state are replaced by the same
quantity leaving the susceptible state, provided the population is large enough. In the case of exact networks, each individual is
unique and thus the system is stochastic and its state (which is a n-dimensional vector collecting the states of each individuals
for a population of size n) changes at each period. The steady-state can be seen as a measure of time spent in the Infected
state.

14See Higham for a survey of the literature.
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should not only make the probability of contagion smaller than the initial one but it should be able to promote

immunization from interaction across individuals. While this would make sense if the infected state has the

�avor of a rival good, the interpretation is not straightforward when we think about diseases. Aware of this

limitation, in example 1 and example 2, we show that when we analyze two of the most-studied networks'

structures in the literature, we should not be concerned with the problem. Furthermore, we argue that, even

when the optimal intervention requires immunization to increase from some interactions, our result is useful.

In fact, corollary 2 gives us the exact cost of the planner's optimal program. If we only allow her to decrease

the probability of contagion from the initial one, our measure of the cost gives a useful lower bound on the

total expenditure the planner needs to prevent the spread of the disease.

In section 5 we study two families of networks. First, we consider a situation where players di�er in their

degrees. Some players have an higher number of connections (degree) with respect to others. We compare

populations with di�erent degree distributions. We want to compare a population where all the players are

similar (have the same degree) with an heterogeneous population (some players have an high degree and

other a small one). Using Corollary 2 we show that it is easier for the planner to prevent the spread of the

disease in the �rst case. In proposition 2 we extend this result showing that, for comparable networks, the

easiest scenario to face for the social planner is one where all the players are connected among them. Finally,

we compare populations with two communities that are more or less integrated between them. We show

that the social planner's optimal strategy is to limit interactions between individuals of the two communities

no matter what is the initial con�guration. We argue that these interactions are crucial to the spread of the

disease in the population and that is why are the target of the planner. Fighting the disease separately in

the two communities is the best way for the planner to defeat the disease.

2 Literature Review

Our paper inscribes itself in the literature on di�usion processes among a population of individuals who

interact with one another. 15. There are two main modeling choices that impact the properties of those types

of processes: the structure of connections between individuals and the details of how the transmission takes

place from one individual to another. The SIS model has been examined under a wide range of connection

structures. In the benchmark version, the pattern of interactions is not �xed and individuals have the

same probability of meeting any other individual at each period. This is called the homogeneous mixing

15To see a full review on modeling dynamical systems on networks, see Porter and Gleeson, 2016 ([40])
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assumption. A re�ned version of this model is one where individuals are de�ned by the number of connections

they have, their degree. The homogeneous mixing assumption is maintained but some individuals meet more

people than other. Consequently the outcome varies by type of individuals. Lopez-Pintado, 2007 ([34]) and

Jackson and Rogers, 2007 ([35]) are examples of this approach. The pattern of connections is thus expressed

through the degree distribution of the population, that is, the fraction of individuals having exactly d friends

for all possible d. This modeling choice yields tractability but fails to grasp various important features of

connection patterns, such as geography or the long-term aspect of interactions. This is why we chose to

study exact arbitrary networks. In exact networks, every individual is di�erent in principle and has his own

set of links.

Regarding the transmission function, Gleeson, 2013, ([25]) compares di�usion processes under di�erent

contagion mechanisms. The probability of contagion can be an increasing function of the absolute number

of my friends who are infected (SIS model), of the relative number of my friends who are infected (voter

model), it can follow a majority rule, a threshold rule, or an Ising Glauber model. 16 Beyond those well-

de�ned transmission function, Lopez-Pintado, 2007 ([34]) brings an interesting contribution to the literature

by working with an unspeci�ed function. Lopez-Pintado, 2007 varies the properties of this function and

analyzes how her outcomes of interest change. As opposed to those papers, we chose the SIS model for its

tractability as it allowed us to deal with more complexity on the network structure side, which is our focus.

While it is really interesting to analyze the dynamic of the SIS model, we decide to focus on long run

outcomes (Steady-States). We do this for tractability and to compare our work to the economic literature.

Among the papers studying the steady-state of contagion processes, we distinguish two main objects of

interest. A strand of literature (like Jackson and Rogers, 2007, [35]) focuses on positive steady-states (where

at least some individuals or some types have a strictly positive steady-state value) and derive properties

of those steady-states. For instance, Jackson and Rogers 2007 provides comparative statics on the average

level of infection as a function of the dispersion of the degree distribution representing the network. Another

branch of literature explores when the steady-state is null (nobody is infected, an initial seeding of a disease

dies out before spreading) versus strictly positive (an outbreak of the epidemics occurs). Lopez-Pintado,

2007 ([34]) is an example.

We belong to this last group, but as opposed to most of this literature that focuses on which characteris-

tics of the process (ratio of the individual transmission and remission rate) allow to prevent an outbreak for
16See Gleeson (2013) for a discussion
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di�erent network structures, we take the parameters of the process as given and we ask which network struc-

ture reaches the zero-steady-state for those parameters. Galeotti and Rogers (2013) consider an intervention

where part of the individuals get vaccination and therefore cannot be infected. Di�erently from them the

planner in our case targets links and individuals. While Galeotti and Rogers (2013) considers a speci�c type

of network we try to give a result that generalize to all networks' structures.
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3 The Model

In this section we present the SIS model and We recall some important results from the literature on epidemic

di�usion.

We study a population of n individuals located on a network. The set of player is called N = 1, . . . , n.

The network is described by the adjacency matrix G ∈ Mn,n(R+). Each element gij of G represents the

intensity of the link between individual i and j. 17 18

We model the epidemic process in continuous time. At each time t, each individual can either be

susceptible, or infected. Let Xi(t) be the Bernoulli random variable that takes value 1 if node i is infected

at time t and value 0 if it is not. An infected node may become susceptible at a constant rate δ > 0. The

infection rate of a susceptible node i is λ
∑n
j=1 gijXj(t). Here λ is a parameter measuring the contagiousness

of the disease. The second term of the product
∑n
j=1 gijXj(t) capture the importance of the interaction

with the other players. The probability of becoming infected is increasing in the probability of nodes j being

infected weighted by the link that i shares with j.

Following Pastor-Satorras et al (2015) [38], we write the equations governing the evolution of the expec-

tation of Xi(t) (which is also the probability that node i is infected at time t as Xi(t) is Bernoulli).

dE [Xi(t)]

dt
= E

−δXi(t) + (1−Xi(t))λ

n∑
j=1

gijXj(t)

 (3.1)

The term inside the expectation on the RHS of equation (3.1) when i is infected is equal to -δ (the

recovery rate) while it is equal to λ
∑n
j=1 gijXj(t) (the probability of infection) when i is susceptible.

Since Xi(t) is a Bernoulli we can rewrite equation (3.1) as:

dxi(t)

dt
= −δxi(t) + λ

n∑
j=1

gijxj(t)− λ
n∑
j=1

gijE [Xi(t)Xj(t)] (3.2)

where xi(t) the probability that i is infected at time t.

17In the literature there are two di�erent approaches to model networks. It is possible to impose that all connections among
players have the same intensity. In this case the adjacency matrix has only entrances 0 or 1. gij is 1 when there is a link between
i and j, 0 otherwise. We decide, instead, to model the network using a weighted adjacency matrix. Connections between players
can vary in intensity. We believe that this approach �ts well when analyzing the di�usion of diseases. This approach is also
necessary for the results we obtain

18We limit the study to symmetric networks. Links are bidirectional. i can be a�ected by j with the same probability as j
can be infected by i.
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3.1 Discussion of the epidemic threshold

It is a well known result that equation (3.2) has always one steady-state where xi(t) = 0 for all i. Sometimes

a positive steady-state exists as well. A crucial goal of the epidemics literature is to determine a threshold for

the di�usion parameters λ, δ such that the initial seed of the disease does not result in an outbreak, or again

such that the zero-steady-state is the only one. We will recall two important results from the literature on

epidemics (Lemma 1 and Lemma 2) that explain the role of the largest eigenvalue of the adjacency matrix

G on the existence of an outbreak (non-zero steady state).

Epidemic threshold lower bound in the exact SIS model

Lemma 3. A lower bound for the threshold of the epidemic process λ
δ in the exact version of the SIS model

is 1
λ1

:

λ

δ
≤ 1

λ1
⇒ there is no outbreak (3.3)

Proof. Following Pastor-Satorras et al (2015) [38], we revisit equation (3.2) and note that for all i,
∑n
j=1 gijXi(t)Xj(t) ≥

0. We can thus transform (3.2) into an inequality by removing the last term, and replacing expectations of

Bernoulli random variables by their probability of success:

dxi(t)

dt
≤ −δxi(t) + λ

n∑
j=1

gijxj(t) (3.4)

This inequality holds for all i. We create a system of n inequalities, i = 1, . . . , n. We observe that setting

inequalities to equations, the system boils down to (3.12) , whose solution has been found in (3.19). We

deduce that:

x(t) ≤
n∑
r=1

ar(0)e(λλr−δ)tvr (3.5)

The fastest growing term (as t increases) of (3.5) is the one associated with the highest positive eigenvalue

λ1. This expression shows that in order to get x(t) going to 0, we need all exponential factors to be negative,

or again:

λ

δ
≤ 1

λ1
⇒ the right hand side of (3.5) decays exponentially (3.6)
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Therefore the inverse of the highest eigenvalue of the adjacency matrix G is a lower bound for the

threshold of the epidemic process (meaning λ
δ ) at which the disease does not degenerate in an outbreak in

the exact model.

This �rst result tells us that a su�cient condition not to have an outbreak is that the largest eigenvalue

of the adjacency matrix has to be small enough with respect to the ratio δ
λ
. Intuitively this ratio measure

how fast an individual recovers from the disease (δ) with respect to how contagious the disease is (λ). We

would like the implication in (3.6) to be a double implication. While this is not always true, we show how

adding and additional assumption gives us the result.

SIS-epidemic threshold under individual-based mean-�eld approximation (IBMF) We assume

that the two random variables of neighboring nodes are uncorrelated. While it seems a strong assumption,

this is the standard in the literature.19 We will keep this assumption throughout the paper.

Assumption 4.

E [Xj(t)Xi(t)] = E [Xj(t)]E [Xi(t)] for all t, i, j (3.7)

Under assumption 4 it is possible to prove the following

Lemma 4. The disease dies out and an epidemic is avoided in the IBMF approximation of the SIS model

i�:

λ

δ
≤ 1

λ1
(3.8)

Proof. We remind the equations governing the evolution of the expectation of Xi(t):

dE [Xi(t)]

dt
= E

−δXi(t) + (1−Xi(t))λ

n∑
j=1

gijXj(t)

 (3.9)

We use an individual-based mean-�eld approximation (IBMF), assuming that the status of neighboring

nodes are independent, or again:

Using (3.7) in (3.9), and replacing the expectation of the Bernoulli variables by their probability, we get:

19Pastor-Satorrar et al. (2015) study the accuracy of the individual mean-�eld approximation for di�erent type of networks.

41



dxi(t)

dt
= −δxi(t) + (1− xi(t))λ

n∑
j=1

gijxj(t) (3.10)

We choose the initial conditions so that at t = 0 we have a small number c of infected individuals and

everyone else is susceptible, so that xi(0) = c/n. One way to get insight from (3.10) is to see that as n grows

large, 1−xi(0) goes to 1, and following Pastor-Satorras et al (2015) [38], we approximate (3.10) by replacing

1− xi(0) by its limit value:

dxi(t)

dt
= −δxi(t) + λ

n∑
j=1

gijxj(t) (3.11)

or in matrix form:

dx(t)

dt
= λA(G)x(t) (3.12)

with x(t) the vector of the {xi(t)}i and:

A(G) = G− δ

λ
I (3.13)

To �nd a solution to the system of di�erential equations in (3.12), we decompose x(t) on the orthonormal

basis composed of the eigenvectors of A (which are the same as the eigenvectors of G) that we call {vr}nr=1

where vr is the eigenvector associated with λr, the r-th eigenvalue of G, where eigenvalues are ranked in

decreasing order. We call ar(t) the coe�cient of the decomposition associated to vr:

x(t) =

n∑
r=1

ar(t)vr (3.14)

Di�erentiating this expression we get:

dx(t)

dt
=

n∑
r=1

ar(t)

dt
vr

Combining the previous equation with (3.12):

n∑
r=1

dar(t)

dt
vr = λAx(t) = λA

n∑
r=1

ar(t)vr = λ

n∑
r=1

ar(t)Avr (3.15)

and �nally, using the fact that λr is the eigenvalue of G associated with the eigenvector vr and that from
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(3.13) we can write the r-th eigenvalue of A as λr − δ
λ :

n∑
r=1

dar(t)

dt
vr = λ

n∑
r=1

ar(t)

(
λr −

δ

λ

)
vr (3.16)

As {vr}nr=1 constitutes a basis of Rn, the decomposition of any vector on it is unique and thus, ∀r, t:

dar(t)

dt
= ar(t) (λλr − δ) (3.17)

For each , r, t, the above di�erential equation as for solution:

ar(t) = ar(0)e(λλr−δ)t (3.18)

Finally, plugging (3.19) into the decomposition (3.14), we get:

x(t) =

n∑
r=1

ar(0)e(λλr−δ)tvr (3.19)

The same argument as in the previous proof tells us that:

λ1 ≤
δ

λ
(3.20)

4 Optimal immunization

We determined in the previous section the relationship between the largest eigenvalue of G and the epidemic

threshold under di�erent aproximations. The inverse of the highest eigenvalue of G, 1
λ1

is the exact epidemic

threshold in the IBMF approximation, and the upper bound of this threshold if we remove assumption 4.

In this section we model the intervention of the planner and we state the main result of the paper.

We assume that the social planner can intervene to change the structure of the network determining the

di�usion of the disease. If gi,j is the weight that determine the probability that i is infected from j the

planner can invest resources to to lower this probability to g′i,j < gi,j . We make the following assumption

about the cost she incurs to alter the network:
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Assumption 5. Changing the structure of the network from G to G∗ has a cost of ||G∗ − G||F , where

||M ||F =
√∑

ijm
2
ij is the Frobenius norm of M.

The previous assumption captures the idea that the social planner can modify the interaction between i

and j at a convex cost. The planner faces increasing marginal costs of intervention. 20.

Once we established a metric on the cost of intervention of the planner we can ask what is the least

costly intervention that prevent the di�usion of the disease in the population. As we discussed in the

previous section this is equivalent to impose conditions so that in steady state all the variable measuring

infection are equal to zero. Lemma 2 gives us a good starting point to solve the problem of the planner.

Having the highest eigenvalue of G less or equal to δ
λ is equivalent to having the matrix A(G) (de�ned in

(3.13)) be semi-de�nite negative. As a result we have that:

Corollary 4. The least costly intervention for the planner is the one that change the network from G to G′,

where G′ is the solution to:

min{||A(G)−A(G′)||, such that A(G′) is negative semi− definite}

This corollary enables us to resort to a famous result of the computer science literature: we use the

theorem 2.1 of Higham(1998)[26] to �nd the nearest symmetric negative semi-de�nite matrix of A(G), and

to see how to perform this manipulation. Higham(1998) [26] also gives us a closed form solution for the cost

of intervening on any given network structure, as a function of λ
δ
.

In order to state the theorem, we remind that A(G) and G have the same eigenvectors {vr}nr=1. We call

{µr}nr=1 the n eigenvalues of A(G), µr being associated with the eigenvector vr. They can be expressed as

a function of the eigenvalues of G in the following way:

µr = λr −
δ

λ
(4.1)

The following theorem specify the optimal intervention of the planner:

Theorem 3. The planner intervenes on the network changing A(G) to Ã(G), where:

20The Frobenius norm can be seen as an extension of the euclidean norm to Rn×n
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Ã(G) = V∆V T (4.2)

with V the matrix whose r-th column is the the r-th eigenvector of G, vr, and where ∆ is the following

diagonal matrix:

∆ =


d1

. . .

dn


with

dr =

 µr if λr <
δ
λ

0 otherwise

The cost to reach it from A is:

||A− Ã||2F =
∑
λr>

δ
λ

(
λr −

δ

λ

)2

(4.3)

Proof. The result directly follows from theorem 2.1 of Higham(1998)[26] and its proof.

We can restate the theorem in term of the new network G instead of A(G) to have a better interpretation

of the result

Corollary 5. The closest network structure G̃(G) of G such that no outbreak occurs is:

G̃(G) = V∆V T +
δ

λ
I = V ΛV T (4.4)

with

Λ =


λ̃1

. . .

λ̃n


and
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λ̃r =

 λr if λr <
δ
λ

δ
λ

otherwise

We are changing the all the eigenvalues of the matrix G that exceed the ratio δ
λ , while leaving unchanged

the ones below this ratio. All the eigenvectors of the original adjacency matrix remained unchanged.The

�rst comment on the property of the new network structure regards what is known in the network literature

as the spectral gap:

De�nition 7. The spectral gap is the di�erence between the largest and the second largest eigenvalues of the

adjacency matrix.

A straightforward application of 5 is:

Corollary 6. If

λ2 ≥
δ

λ

then the spectral gap of the transformed network structure is 0.

This is interesting because the spectral gap has an interpretation in terms of network structure. A strictly

positive spectral gap corresponds to a network with only one component. A small but positive spectral gap

corresponds to a network with at least two communities with many within-group links and few between-

group links. After intervention and under the condition stated in proposition 6 the spectral gap will close

to zero. The new network will be characterized by communities that do not share links across them. The

social planner isolate players into separate communities and then reduces the spread of the disease inside

each community until elimination.

It is important to note that Theorem 1 also gives us the cost of the transformation, as a simple function

of λ, δ, and the eigenvalues of G. It means that given two network structures and an epidemic threshold, we

directly have a number enabling us to rank those two networks in terms of how costly it would be for the

social planner to intervene. It can also be interpreted as how close each network is from a structure that

prevents an epidemic outbreak. In the next section we will use this information to do comparative statics

on di�erent networks.
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5 Applications

We discuss limitations and bene�ts of our method, and illustrate them in three examples hereafter.

When applying the intervention described in the previous section, we see that the post-intervention matrix

described in equation (4.4) may have negative entries. Our method requires to make the matrix A(G) = G− δ
λ

semi-de�nite negative. There is not a condition that preclude the new matrix (after intervention) to exhibit

negative entries. In the epidemics framework, a link with negative intensity between two individuals is

translated into a decreased probability to be infected for one of the individuals when the other becomes

infected. This interpretation is di�cult to justify in some of the applications we described.

When the minimal-cost intervention we presented make some entries of the modi�ed network negative,

our theorem does not give information about other interventions to prevent epidemics di�usion. The theorem

2.1 of Higham (1988) [26] only addresses minimization problems that do not apply constraints on the outcome

matrix properties. We therefore regard our result as a lower bound of the cost of intervention. The problem

that the planner has to solve is the same one but with the additional constraint of having the post-intervention

matrix with non-negative entries only. When this additional constraint is not binding, meaning that the

matrix G̃ de�ned in (4.4) has no negative entries, theorem 3 hits its full potential. It tells us what is the

intervention that corresponds to the minimal-cost intervention, and gives us a simple formula of the cost of

the intervention, allowing for quick comparative statics. We give hereafter examples where this lower bound

for the cost of intervention is reached.

5.1 Example 1

5.1.1 Initial structure

We consider a population of n individuals who di�er in their total intensity of interaction (or equivalently

their probability of spreading the disease). Each individual i is characterized by a coe�cient ci measuring

his propensity of interaction. ci is drawn from a distribution C with support R+. We assume random mixing

, that is the probability of having an interaction with an individual j is proportional to j's propensity of

interaction. The strength of the link between individuals i and j is therefore:

gij = cicj
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Two individuals are very likely to have an interaction if they both have an propensity of interaction. A

di�erent interpretation is that if ci measures the contagiousness of individual i it is likely that an interaction

with him will result in an high probability of infection. The network framework described in this example is

the intensity counterpart of the degree distribution framework where links are non-weighted, 0 or 1, but exist

with a probability depending on the degree of two nodes. If nodes i and j have degree di and dj respectively,

the probability that they are linked is proportional to didj . In our example, all nodes are linked, and the

weight of the link between i and j is cicj .

We will try to determine the optimal intervention of the planner and to compare the cost of intervention

for di�erent distributions. In order to that, we will compute the eigenvalues and eigenvectors of the adjacency

matrix to apply Theorem 1.

Eigenvalues and eigenvectors of G The only positive eigenvalue of G is λ1. For i = 2, . . . , n, λi = 0.

The eigenvector associated to λ1 is v1. We have:

λ1 = c21 + c22 + ...+ c2n

and

v1 =



c1√
c21 + c22 + ...+ c2n

c2√
c21 + c22 + ...+ c2n

...

cn√
c21 + c22 + ...+ c2n


5.1.2 Post-intervention structure

Applying theorem 1 we can see that order to prevent an epidemics, the planner transforms the structure

from G to G̃:

G̃ =
δ

c21 + c22 + ...+ c2n
G

This means that each link is a�ected proportionally to its initial intensity.
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5.1.3 Comparative statics of the cost of intervention

We wish to derive comparative statics with respect to the distribution C which determines the intensities

{ci}i.

We are interested in comparative statics with respect to the variance of the {ci}i, as it is trivial that

increasing the average of C increases the di�usion of the disease and thus the cost of the intervention. The

idea is to compare a network where individuals are similar in their propensity to interaction to one where

individuals are instead heterogeneous.

In order to neutralize the e�ect of the mean, we compare mean-preserving spreads of C. Given the weight

of each ci is one, the mean-preserving spread will express itself through the support of the {ci}i.

Theorem 3 gives us the cost of the intervention:

||G̃−G||2F = λ1 −
δ

λ
= c21 + c22 + ...+ c2n

We see that by taking a mean-preserving spread of the initial distribution of {ci}i, we increase the cost

of intervention.

The less spread the distribution C is, the easier it is for the planner to intervene on the network. Another

interpretation is that as links intensities are more homogeneous, it is unambiguously easier to intervene to

prevent epidemics.

Comparison with Jackson, Rogers (2007) [36] We wish to draw a parallel with proposition 2 of

Jackson, Rogers (2007) [36] (hereafter JR), which states that when the epidemic characteristics λ
δ is low

enough, a mean-preserving spread of the degree distribution of the network yields higher average infection.

This result echoes ours that by spreading the intensities, it becomes more di�cult to immunize the population

(in terms of higher cost of intervention). The comparison is delicate however because of the following two

reasons:

• Both JR and we make comparative statics with respect to spreads of the degree distribution of the

network. The object of interest is di�erent though: they show results on the average level of infection

in the (positive) steady-state, while we provide the cost of reaching a zero steady state level from

an initial network that exhibits a positive level of infection. A parallel may thus be drawn between

lowering the steady-state level of infection (in JR) and lowering the cost of reaching a zero-steady state

(in this paper). Even though it intuitively makes sense, we don't have the proof of it.
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• Proposition 2 of Jackson, Rogers (2007) [36] has two elements. It states the existence of two thresholds

λ and λ̄. When λ
δ is low enough (λδ < λ), a spread in the degree distribution yields higher average

infection. But when λ
δ is high enough (λδ > λ̄), a spread in the degree distribution yields lower average

infection. In the �rst case, the behavior of JR's model and ours is comparable (comparable in the

sense de�ned in the previous element). Taking a mean-preserving spread of the degree distribution

increases the average level of infection in JR, and increases our cost of intervention. This statement

naturally raises the question of why we focus on the �rst case. Our answer is the following: it makes

sense to think that what matters for total eradication is the case where λ
δ is low enough and we have a

low average infection, that is the �rst case of JR. However this claim disregards the fact that we don't

know the dynamics of the average infection rate if we were to progressively increase (or decrease) the

spread of the degree distribution. This matters if our initial starting point places us in the case where

λ
δ > λ̄.

Hypothetical dynamics when increasing the spread in Jackson, Rogers (2007) [36] We start

from λ
δ > λ̄. Figure 3 is a picture of the λ

δ with respect to the thresholds:

Figure 3: Thresholds for the cases in proposition 2, Jackson, Rogers (2007)

In this case of JR, an increase in the spread of the degree distribution decreases average infection. To

understand why a starting point at λ
δ > λ̄ is delicate, we refer to the proof of proposition 2 of JR. They

resort to an intermediary variable, that they call θ, which is the average level of infection taken with respect

to a transformation of the degree distribution. The existence of two opposite reactions to a mean-preserving

spread comes from the fact that this variable θ is always increasing with a mean-preserving spread, but the

relationship between the actual average infection (that they call ρ) and θ is hump-shaped (see �gure 4. The

road towards the zero steady state from θ = θ1 (on the same �gure 4) consists of continuously decreasing the

mean-preserving spread, and thus θ, even though the average steady-state ρ (for instance, ρ2 > ρ1) increases
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�rst before decreasing. It is especially di�cult to understand in which case one stands as when passing from

θ = θ2 to θ = θ3, one switches from the high zone to the low zone, but does not realize by observing the

relationship between θ and ρ (note that ρ3 > ρ2 even though we are now in the zone where ρ and θ co-move).

Therefore we do not share the ambiguity of the role of the mean-preserving spread present in JR paper.

θθ1θ2θ3
1
2

ρ3
ρ2

ρ1

ρ

0 1

Figure 4: Relationship between average infection ρ and θ while changing the degree distribution, at �xed λ,
in Jackson, Rogers (2007)

Insights from the comparison This potentially cyclical relationship between spread and average

infection limits the comparison between Jackson, Rogers' result and ours. Yet we refer their result as it

shed lights on one possible mechanism for our �nding. In their paper, they claim that a spread in degree

distribution boosts average infection because when the exogenous contagiousness is not favorable to the

disease (low λ
δ ), it is crucial to have very high degree nodes that serve as conductors of the disease, otherwise

the epidemics would die out. If this behavior is the last resort of the disease before vanishing, it makes sense

that the planner prevents it by containing the structural inequality in the network structure.

.

5.2 Example 2

5.2.1 Initial structure

We consider a population of n agents divided into two groups of equal size: agents 1...n2 belong to group 1

and agents n
2 + 1,...,n belong to group 2. Intragroup links have strenght 1− ε, intergroup links have strength

ε, with ε ≤ 1/2. Therefore links are more intense within than between groups. Such a network is represented

by the following adjacency matrix:
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G =



(1− ε) (1− ε) ... (1− ε) ε ... ε ε

(1− ε) (1− ε) ... (1− ε) ε ... ε ε

. . .

(1− ε) (1− ε) ... (1− ε) ε ... ε ε

ε ε ... ε (1− ε) ... (1− ε) (1− ε)
. . .

ε ε ... ε (1− ε) ... (1− ε) (1− ε)



(5.1)

ε represents the strength of inequality between the two types of links: intragroup and intergroup links.

As ε grows from 0 to 1
2 , the total intensity of links does not move, but the distribution of this intensity

does, shifting from maximum heterogeneity (1 versus 0) to total homogeneity ( 1
2 for all links). Note that

by restricting ε to be less or equal to 1
2 , we focus on positive assortative matching, and do not consider

negative assortative matching (where individuals are more linked with members of the other group than

with members of their own).

Eigenvalues and eigenvectors of G The matrix G has two positive eigenvalues:

λ1 =
n

2
, λ2 = (1− 2ε)

n

2
, λ3 = . . . λn = 0

The associate eigenvectors are:

v1 =
1√
n



1

...

1

1

...

1


, v2 =

1√
n



1

...

1

−1

...

−1


The sign of the elements in v2 depends on the group of each individual. The n

2 elements corresponding to

individuals of the �rst group are positive, the n
2 elements corresponding to individuals of the second groups

are negative.
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5.2.2 Post-intervention structure

The post-intervention structure G̃ is:

G̃ =



δ
λ

2
n ... δ

λ
2
n 0 ... 0

... ...

δ
λ

2
n ... δ

λ
2
n 0 ... 0

0 ... 0 δ
λ

2
n ... δ

λ
2
n

... ...

0 ... 0 δ
λ

2
n ... δ

λ
2
n


The �rst thing to note is that the outcome structure does not depend on ε. Regardless of the value of ε,

the planner removes all the intergroup links, and set all the intragroup links to δ
λ

2
n .

5.2.3 Comparative statics of the cost of intervention

We want to study the behavior of the cost of intervention as a function of the inequality of relationships

between intra and intergroup, ε. Theorem 3 gives us the exact value of the cost K of the intervention:

K =
∑
λr>

δ
λ

(
λr −

δ

λ

)2

=

(
n

2
− δ

λ

)2

1{n2> δ
λ} +

(
(1− 2ε)

n

2
− δ

λ

)2

1{(1−2ε)n2>
δ
λ}

We can rewrite the cost as a function of n:

K =


0 if n < 2 δλ (no eigenvalue is lowered)(
n
2 −

δ
λ

)2

if 2 δλ ≤ n < 2 δλ
1

1−2ε (one eigenvalue is lowered)(
n
2 −

δ
λ

)2

+
(

(1− 2ε)n2 −
δ
λ

)2

if 2 δλ
1

1−2ε ≤ n (two eigenvalues are lowered)

(5.2)

Let us focus on the case where there is intervention (that is n > 2 δ
λ
). We call ε̄ the following threshold

for ε:

ε̄ =
1

2
− δ

λn

As a direct application of Theorem 1 we have:21

21The decomposition of the support of ε makes sense as ε̄ is positive. For any ε bigger than ε̄, the cost of intervention remains

at
(
n
2 −

δ
λ

)2
as the second eigenvalue remains under the threshold δ

λ
and the intervention concentrates on lowering the highest

eigenvalue λ1, which is independent of ε. However on [0, ε̄], the second eigenvalue is beyond the threshold δ
λ
, decreases with ε
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• For ε ∈ [0, ε̄], the cost of intervention strictly decreases with ε, from
(

(1− 2ε)n2 −
δ
λ

)2

to
(
n
2 −

δ
λ

)2

• For ε > ε̄, the cost of intervention is constant as a function of ε, at
(
n
2 −

δ
λ

)2

As a whole, the cost of intervention for the planner is weakly decreasing in ε (strictly decreasing for ε < ε̄

and then stable). The more isolated the two communities are, the more di�cult it is to eliminate the disease

in this setup. One potential explanation would be that decreasing the di�usion in one group has spillovers on

the other group, reducing the spread of the disease there too. The more linked the communities are ex-ante,

the bigger this e�ect is. This can seems contradictory to the ex-post structure described in (5.4) where

the intergroup links intensity is lowered from ε to 0. Our result shows that the extra cost of intervention

on intergroup links resulting from an increase in ε is more than compensated by the extra saving made on

intragroup links. We can see it analytically, by computing the derivative of the cost with respect to ε. In

order to separate the two e�ects, we rewrite the costs under another form, directly coming from the formula

of the Frobenius norm for ||G − G̃||2F . There is the same number of links of each type, n2

2 , we can thus

compare the change of cost per link with respect to a change in ε:

• Marginal cost of intragroup link change: 2ε

• Marginal cost of intergroup link change: 2ε− 2
(
1− δ

λ
2
n

)
Therefore, the total marginal cost (divided by the number of links of each type) is:

4ε− 2

(
1− δ

λ

2

n

)
(5.3)

which is strictly negative for ε < ε̄. The cost savings on the intergroup links more than compensate for

the extra cost on intragroups links when we increase ε.

We can compare this e�ect of ε on the cost of eradicating the disease with Galeotti, Rogers (2013)

[23]. They intervene at the group level, as in this example. They consider an intervention where part

of the individuals get vaccination and therefore cannot be infected, as opposed to our intervention that

targets links. They �nd that, under positive assortative matching (our setup), the planner should spread

its immunization e�ort equally across both groups (Proposition 2). Our result is compatible with theirs.

The planner acts symmetrically with regard to groups. However their cost of immunization necessary to

eradicate the disease does not depend on the relative weight of intragroup and intergroup links. It would be

and consequently lowers the cost of intervention.
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interesting to further study the di�erence between the two methods to understand whether passing from a

n dimension intervention to a n2 dimension intervention grants substantial bene�ts.

5.3 Example 3: homogeneous versus heterogeneous networks

We want to generalize what we found in the previous two examples. In both cases, in fact, it results that

for the planner it is more di�cult to intervene when the population is heterogeneous in terms of the link

structure.

We de�ne homogeneous networks in the following way:

De�nition 8. Let G ∈ Mn,n be the adjacency matrix of a network. If there exists a number x ∈ R, x ≥ 0

such that:

gij = x for all i, j

then the network is said to be homogeneous.

The network de�ned in De�nition 2 is one where all the individuals are equally connected to the others.

We want to compare this network with one where the population is instead heterogenous.

The next proposition tell us that it is always cheaper to intervene in an homogeneous network:

Proposition 5. Consider two networks where the sum of the intensity of all connections is equal to 1. The

�rst network is homogeneous, the second is not. The cost of intervention in the �rst network is strictly

smaller than the cost in the second.

Proof. We can associate to the adjacency matrix of any homogeneous network a corresponding stochastic

matrix and use the theory of Markov chains to derive some insights on the planner's intervention. (see Levin

et al., 2006, [32])

When the sum of elements of each column of the matrix is constant and equal to 1, the largest eigenvalue

is equal to 1 and the corresponding eigenvector is (
1√
n
, ...,

1√
n

).

The corresponding adjacency matrix is given by:
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G = λ∗1



1√
n

1√
n

...
1√
n

1√
n

1√
n

...
1√
n

. . .

1√
n

1√
n

...
1√
n


(5.4)

where λ∗1 si the eigenvalue of G. It can be rewritten as:

λ∗1
1√
n

(
1√
n

)T

The adjacency matrix of a generic network can be written, using the singular value decomposition, as:

λ1v1v
T
1 + λ2v2v

T
2 + ...+ λnvnv

T
n

where λ1, λ2, ..., λn are the eigenvalues of the adjacency matrix and v1, v2, ..., vn are the corresponding

eigenvectors.

We can compute the total number of connections in a network summing all the entries of the adjacency

matrix. The number of links for the homogeneous network is:

λ∗1(
1√
n

)T (
1√
n

)

Similarly, summing all the entries of the matrices obtained from the eigendecomposition (weighted by

the corresponding eigenvalues) we obtained that the number of links for the non-homogeneous network is:

λ1(vT1 (
1√
n

))2 + λ2(vT2 (
1√
n

))2 + ...+ λn(vTn (
1√
n

))2

Given that we want to compare two network with the same number of links we ask that the two previous

expressions are the same:

λ∗1 = λ∗1(
1√
n

)T (
1√
n

) = λ1(vT1 (
1√
n

))2 + λ2(vT2 (
1√
n

))2 + ...+ λn(vTn (
1√
n

))2

We note that the dot product vTi (
1√
n

) can be written as ||vi|| ∗ ||
1√
n
||cosθi where θi is the angle between

the vector
√
n and eigenvector vi. Hence, we can express the RHS of the previous equation as:
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λ1||v1||2 ∗ ||
1√
n
||2cos2θ1 + λ2||v2||2 ∗ ||

1√
n
||2cos2θ2 + ...+ λn||vn||2 ∗ ||

1√
n
||2cos2θn =

= λ1cos
2θ1 + λ2cos

2θ2 + ...+ λncos
2θn

whre the last equality comes from the fact that the eigenvectors have length 1 (from the singular value

decomposition). Note also that cos2θi ∈ [0.1]. Finally observe that cos2θ1 + cos2θ2 + ...+ cos2θn = 1, being

v1, v2, ..., vn an orthonormal basis for Rn

Therefore we know that λ∗1 can be written as a convex combination of the eigenvalues of the non-

homogeneous network. This implies that at least one of the eigenvalue of the non-homogeneous network

is larger than λ∗1. As a direct consequence of Theorem 1, we know that the cost of intervention for the

non-homogeneous network must be bigger.

6 Conclusion

We investigate contagion processes among a networked population. We use results from linear algebra

applied to computer science to �nd how to prevent contagion from an initial seed. For a given di�usion

process and an arbitrary given initial network, we give the closest network to the initial one such that no

outbreak occurs. We provide intuition on what the intervention on the network structure looks like by

analyzing relevant examples of connection patterns. We discuss the limitations of our result together with

the potential for future research.

Chapter 3

Does intragroup cooperation crowd-out
intergroup cooperation?

1 Introduction

We are interested in the intersection between cooperation and Groups relationships. We de�ne Groups are

large anonymous entities where members do not know the identity of all the other members. However, Group
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membership is observable. We can think of religious or immigrants communities as examples. Groups are

the ideal place where cooperation can occur. If Group members join their forces, they can get higher payo�s

whenever a game is cooperative and there is a commitment device helping them not to deviate from the Group

utility maximizing strategies. However such a commitment device is usually a strong assumption we are not

willing to make. Without commitment device, Groups are confronted to the free-riding problem, where

agents have a pro�table deviation from the Group utility maximizing strategies, leading to a suboptimal

outcome. Nevertheless, it is often seen that some Groups manage to reach cooperative outcomes, depending

on various characteristics (their size, heterogeneity, the threat of outside forces...). Olson (1965) [37] pioneers

the study of Groups confronted to the free-riding problem and discusses the role of the size of the Group

on the ability to sustain cooperation within the Group. Levine and Modica (2013) [33] also investigate

how within group incentives vary with the size of Groups and �nd a non-monotonic relationship, in a peer

discipline set-up close to ours.

One particular characteristic in�uencing cooperation within the Group is the behavior of the outside

environment and we want to further on it. Groups do not live in autarky and group members have to interact

with individuals from both the In-Group and the Out-Group. Many experimental evidence investigates

the relationship between Out-Group behaviors towards the In-Group and cooperative outcomes inside the

Group. We can distinguish two types of Out-Group behaviors: unilateral Out-Group hostility towards the

In-Group, or bilateral relationship between the In-Group and the Out-Group. As our de�nition of Group

is not geographical, we consider that Groups overlap and that actions go both ways. Also, we focus on the

part of the Out-Group made up of members of other Groups, as opposed to members of no Groups, as we

want to understand the dynamics of intergroup relationships.

Empirical and experimental evidence show increased In-Group cooperation when rising the stakes of

intergroup con�ict. Shayo, Zussman (2011) [42] �nd evidence of judicial In-Group bias in Israel, the more

the stronger the neighboring con�ict. Charness et al. (2007) [17] and Tan, Bolle (2007) [43] �nd a causal

link from intergroup con�ict to intragroup cooperation in experimental games. In reality, we often observe

correlation between intergroup hostility and intragroup cooperation: when two communities are at war, more

powerful solidarity mechanisms within groups mean more soldiers, more contributions, more weapon, thus

more con�ict. It is thus legitimate to ask whether there is also a reverse causality and whether intragroup

cooperation crowds out intergroup cooperation.

However, we do not want to talk about the mechanical crowding-out that would occur when agents face

a resource constraint (Bramoulle, Goyal, (2014), [10]) . Of course in this case one can either give a unit
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of resource inside or outside, and total crowding-out will be observed. We rather want to investigate how

the mechanisms of intragroup cooperation impact intergroup cooperation. We thus open the black box of

intragroup cooperation and develop a model where cooperation is sustained by peer punishment, based on

Kandori (1992) [29]: agents may cooperate today with the agent they are matched with because they hope

to bene�t from another agent that will cooperate with them tomorrow. The system is equipped with a local

information device which helps agents determine whether their match cooperated or not yesterday, and thus

whether to cooperate or punish today.

We introduce the Kandori local information device in a simple overlapping generation gift-giving game

(inspired from Johnson, Levine, Pesendorfer (2001) [28]), with that particularity that society is divided into

two Groups and that matches can be realized within or across Groups. Thus Groups are only a label. They

are exogenous and symmetric in any characteristics. But the local information device performs di�erently

according to whether matches are within or across Groups. In other words the monitoring technology is

unambiguously more e�cient within Groups than across Groups. We can easily imagine that it is the case

in reality: agents have usually more information about the In-Group than the Out-Group, or is better at

distinguishing guilty In-Group members because one knows correlates of guilt or innocence when regarding

In-Group members. Furthermore, this is the interesting case because we could expect that cooperation would

only occur where information is better, whereas we sees in our model that it is not always the case.

There is on path punishment �rst because monitoring technologies are imperfect and may fail to transmit

the information that cooperation has previously taken place. But punishment also rightly takes place as a

proportion of agents, called the guilty players, are not complying with the social norm of cooperation.

Agents are identical except in the dimension of their idiosyncratic cost of cooperation, bringing about high-

cost players to deviate and low-cost players to cooperate (called Innocent players). This heterogeneity in

cooperation is what brings action in the model through the proportion of In-Group and Out-Group which

becomes an endogenous variable.

We make another signi�cant change: we introduce imperfect directed search into the matching process,

in order to link cooperation decisions to the Group or your matching partner. This leads to two types of

equilibrium. First a Non-Sorting Equilibrium where both innocent and guilty players prefer to be matched in

the In-Group (and direct their search accordingly), where more cooperation is sustained thanks to the better

monitoring technology. Second, a Sorting Equilibrium sees Innocent players still targeting the In-Group, but

Guilty players now preferring to be matched outside, as the weaker monitoring technology makes it less likely

to be recognized as guilty. We then compare their welfare properties for Innocent and for Guilty players.
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For The question boils down to whether agents prefer a matching pool with guilty players in majority from

the In-Group or from the Out-Group.

The paper proceeds as follows: section 2 brie�y discusses related literature. Section 3 presents the model.

Section 4 lays out players incentives. Section 5 summarizes the typology of equilibria this game possesses.

Section 6 discusses results on crowding-out for Non Sorting equilibria, whereas section 7 compares outcomes

for Sorting versus Non Sorting equilibria. Section 8 concludes.

2 Literature Review

We locate the paper at the intersection of the literature on non cooperative repeated games sustaining

cooperation through social norms and on matching. The di�erence between our paper and the �rst type of

literature has already been discussed earlier. Regarding the second one, we want to single out the paper by

Eeckhout (2005) [20] which has a similar �avor: society is divided into two groups, matched players play a

non-cooperative game, matching is endogenous as a consequence of the decisions made during the �rst stage

of the game, with segregation or integration as potential outcomes. However, the separation between the two

groups is made along the lines of a payo�-irrelevant characteristic, whereas in this paper being matched inside

or outside the group matters int terms of e�ciency of the monitoring technology. Furthermore, Eeckhout

deprive agents of any information beyond this payo�-irrelevant information, whereas we are interested in

situations where local information devices make monitoring possible.

Our paper is also related to the literature investigating substitution between formal versus informal

arrangements, formal arrangements being the parallel of our notion of In-Group, and informal ones comparing

with the Out-Group. Kranton (1996) [31] presents a set-up where substitution between the market and

informal exchanges arise,the two modes competing for providing consumption goods to the agents. Acemoglu

and Wolitsky (2015) [1] compare formal and informal monitoring, and establish that it is optimal to have

only one form of monitoring. In this sense formal and informal monitoring crowd each other out. The main

di�erence between those two papers and ours is that here In-Group and Out-Group cooperation are identical,

be it for the identity of the group, whereas in Kranton (1996) and Acemoglu and Wolitsky (2015), the nature

of the formal and informal arrangements are di�erent. We want to see under which conditions crowding-out

arise in a set-up where the In-Group and the Out-Group provide an identical service.
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3 The Model

We study a community made up of 2 Groups g ∈ G = {1; 2}. Time is discrete t = 0, 1, ... and agents live

2 periods. They are of the type Young in the �rst period of their life and of the type Old in the second,

and last, period of their life. We consider an overlapping generation model where, each period t, population

is made up of N Young just born at period t and N Old born at period t − 1 and dying at the end of the

period.Therefore population remains constant of size 2N . Additionally we assume that it is equally split

across Groups, each gathering N members
(
N
2 Young and N

2 Old
)
. We denote by gi the Group of individual

i.

We study an in�nitely repeated game made up of one-shot 2-person matching games with local and Group

speci�c information processing. Each period, each Young is matched with an Old. Matches can occur within

or across Groups.

The match of individual i can therefore either be a Young, in which case we call the matching partner

y(i) (thus when i is Old), or an Old, z(i) (in this case i is Young and thus matched with an Old). Whenever

it is obvious that we talk about the Young or Old matching partner of individual i, we omit the i and just

call them y and z.

Players maximize expected utility, with discount factor δ > 0.

3.1 Stage Games

We describe the one-shot game played between an individual i meeting today his Old matching partner z(i).

This game has 2 stages and the following choices faced by the Players:

3.1.1 Pre-matching Stage: Choice of the Targets of the Signalling Technology

Before any matching takes place, each Young makes the following decision,

(x0, x1, x
P
0 , x

P
1 ) ∈ R4

+, identifying a particular signalling technology, of a binary signal s ∈ S = {0; 1}. In

our story, the signal 0 stands for Innocent and the signal 1 for Guilty.

We restrict ourselves to a class of signalling technologies that target a particular action of the choice set

of the agent. The technology then assigns to the agent a signal 0 or 1 with a di�erent probability, depending

on some arguments and on whether the agent chose the targeted action.

Formally in this environment, we de�ne a signalling technology σ(.) associated to the target (x0, x1, x
P
0 , x

P
1 ) ∈

R4
+ as a particular map of the type:
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R+ ×G3 → ∆(S)

To each element (x0, x1, x
P
0 , x

P
1 ) ∈ R4

+ corresponds a di�erent target signalling technology. The elements

of R3
+×G3 are then classical arguments of a signalling technology (choices and characteristics of the players),

but the mechanical device is �xed once chosen the target (x0, x1, x
P
0 , x

P
1 ) ∈ R4

+.

To summarize, the �rst action of the Young in this environment is to �x this target (x0, x1, x
P
0 , x

P
1 ) ∈ R4

+

of a signalling technology. This action is observable by the entire population. Therefore we omit to analyze

the incentive compatibility of this target setting, for instance by assuming that a deviation on this choice

triggers punishment for sure.

Then come choices that are not observable anymore and therefore that will need to be incentivized in

equilibrium.

3.1.2 Matching Process

Matching is not random. We consider a model of directed search where the Old choose whether to direct his

search e�ort towards the In-Group or the Out-Group. Let the variable µi be the choice of the Old i:

µi =

 0 if the Old wishes to be matched with an In-Group partner.

1 if the Old wishes to be matched with an Out-Group partner.

We introduce an imperfection in the matching technology: even though in a symmetric equilibrium (on

which we will focus), and with our Group and generation size assumptions, all demands could be satis�ed,

the result of the directed search will be stochastic. If in each Group, n0 and n1 Old members wish to be

matched respectively inside and outside their own Group (with n0 + n1 = N
2 ), only a fraction of them will

achieve their goal.

P
[
y(i) ∈ gi|µi = 0

]
= P

[
y(i) /∈ gi|µi = 1

]
= 1− q,

The parameter q is therefore a measure of the imperfection of the matching technology. It represents the

probability of failure, for individuals targeting their In-Group and their Out-Group respectively. We assume

q < 1
2 otherwise players would anticipate the failure and target the opposite Group, which is not interesting.

Note that failure means failure to be matched in the desired Group. But in any case, each Old gets matched

with a Young at each period. No Old remains unmatched, as in traditional directed search models.
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The parameter q is common knowledge. The choice µi however is not observable to the Young partner

of the Old. The Young can only see which group the Old belongs to.

3.1.3 Post-matching Stage: Gift-Giving Stage

Matches are realized. Each Young is paired with an Old, be it from his Group or not. Only Young make a

decision. Each Young observes:

1. His random idiosyncratic unit cost of giving a gift: Ci ∼ U [0; C̄], C̄ > 0;

2. The choice of the target signalling technology: (x0, x1, x
P
0 , x

P
1 ) ∈ R4

+;

3. The signal sent by the Old he meets: sz(i) ∈ S = {0; 1};

Then he takes an action x ∈ R+, which corresponds to a gift of unit cost Ci > 0 for him and of unit

bene�t F > 0 for the Old. As F > Ci,∀Ci by assumption, there are gains of trade at any level of gift. Stage

payo�s are:

U : R+ → R2

U(x) = (−Cix, Fx)

to the Young and the Old respectively.

We can observe that in the absence of community enforcement, the optimal period game strategy for the

Young is x = 0.

3.2 Signal Processing

As commented earlier, the environment is equipped with a target signalling technology that sends a signal

on behalf of each Old before his partner decides whether and how much to give to him. The target is made

up of 4 elements: a gift when meeting an Innocent agent (sending a signal s = 0), a gift when meeting a

guilty agent (sending a signal s = 1), both gifts varying whether meeting an In-Group or an Out-Group

member.

Those gifts can be summarized by a function α : G2 × S → R+, which tells agent i, meeting an Old j

with signal sj how much he is supposed to give as a function of his own group, the group of his match and

the signal sent by his match:
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α(gi, gj , sj) =



x0 if (gj , sj) = (gi, 0)

xP0 if (gj , sj) = (gi, 1)

x1 if (gj , sj) = (−gi, 0)

xP1 if (gj , sj) = (−gi, 1)

The notation −gi refers to the group agent i does not belong to.

The target signalling technology can thus be written as a probability distribution σ : G3×S×R+ → ∆(S):

σ
(
gi, gj , gk, sjt , x

i
t

)
[1] =



π0 if (gk, xit) =
(
gi, α(gi, gj , sjt )

)
πP0 if gk = gi and xit 6=

(
α(gi, gj , sjt )

)
π1 if (gk, xit) =

(
− gi, α(gi, gj , sjt )

)
πP1 if gk = −gi and xit 6=

(
α(gi, gj , sjt )

)
with πPγ > πγ ,∀γ ∈ {0, 1}. γ = 0 refers to In-Group and γ = 1 refers to Out-Group.

We denote by λγ ≡ πPγ − πγ ,∀γ ∈ {0, 1}, that is, how much more likely the agent is to send a bad signal

when deviating from the norm with respect to complying with the norm, when the matching takes place

respectively In-Group or Out-Group.

Group-Speci�c E�ciency of the monitoring technology and Sorting .

One major assumption is the following:

λ0 > λ1 (3.1)

It means that the In-Group is technologically better at distinguishing Innocent players from Guilty players

than the Out-Group. We assume this as we are interested in the impact of this imbalance on desired matching

groups from the Old.

We can expect that the Old who cheated when they were Young will be attracted to matches in the

Out-Group and sort accordingly as they will be less likely to be recognized as Guilty.

On the other hand, the Out-Group is less attractive as a lower monitoring e�ciency will allow to reach

less cooperation, as we will show later. The maximum cooperation level sustainable with the Out-Group

will be further depressed as Young matched with the Out-Group expect a lower proportion of cooperative

players in this pool, due to the sorting process described above.
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We are interested in analyzing this very trade-o�.

In order to make the In-Group unambiguously better at monitoring than the Out-group, we also start

with the following assumptions:

π0 < π1 and πP0 > πP1 (3.2)

3.3 Strategies and Equilibrium de�nition

3.3.1 Strategies

Period 2 (Old) .

Strategies for the Old are maps ςO : G × G × S × R+ → {0; 1} that state whether the Old targets the

In-Group or the Out-Group, depending on whether he acted as Innocent or Guilty yesterday. We measure

Innocence and Guilt as conformity or not to the strategy prescribed by the target signalling technology,

which will then lead to an Innocent or Guilty signal.

Period 1 (Young) .

Strategies for the Young are maps ςY : G×G× S × [0;F ]→ R+.

Depending on the cost the Young draws on [0;F ], he decides whether to act Innocent or Guilty (always

in terms of mimicking the strategy prescribed by the signalling technology).

3.3.2 Equilibrium De�nition

We need the following notation: ρ0, ρ1, ρ
P
0 , ρ

P
1 are the proportions of agents which comply with the prescribed

rule (play innocent), when meeting respectively an Innocent In-Group member, an Innocent Out-Group

member, a Guilty In-Group member, a Guilty Out-Group member. Innocent and Guilty correspond to the

signal sent by the Old.

A Peer Punishment Stationary Equilibrium are strategies
(
ςOi
)
i=1,...,N

,
(
ςY i
)
i=1,...,N

, proportions
(
ρ0, ρ1, ρ

P
0 , ρ

P
1

)
such that:

1. Given ρ0,t, ρ1,t, ρ
P
0,t, ρ

P
1,t, given everybody else plays the equilibrium strategy pro�le, ςOit maximizes the

utility of the agent i as an Old in each period.
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2. Given ρ0,t, ρ1,t, ρ
P
0,t, ρ

P
1,t, given everybody else plays the equilibrium strategy pro�le, ςY it maximizes the

utility of the agent i as a Young in each period and has the following form, for the Young i meeting

the Old j sending signal sj :

ςY (gi, gj , sj , Ci) =

 α(gi, gj , sj) if Ci ≤ C̄(gi, gj , sj)

0 if Ci > C̄(gi, gj , sj)

where C̄(gi, gj , sj) is a cut-o� cost, depending on whether the match was In-Group or Out-Group, and

the signal Innocent or Guilty:

C̄(gi, gj , sj) =



C̄(x0) if (gj , sj) = (gi, 0)

C̄(x1) if (gj , sj) = (−gi, 0)

C̄(xP0 ) if (gj , sj) = (gi, 1)

C̄(xP1 ) if (gj , sj) = (−gi, 1)

3. ρ0,t, ρ1,t, ρ
P
0,t, ρ

P
1,t are the proportions of Young who play innocent respectively in the In-Group and the

Out-Group interactions at time t.

4 Players Incentives

4.1 Old Players Incentives

There are two possible strategies for the Old, leading to two di�erent equilibria:

1. Non Sorting Equilibrium: Even though monitoring is weaker with the Out-Group, the Guilty players

of period 1 still prefer to target the In-Group during the matching process.

2. Sorting Equilibrium: Due to the weaker monitoring with the Out-Group, the Guilty players of period

1 prefer to target the Out-Group during the matching process.

We restrict the parameters to the case where the Innocent players always want to target the In-Group.

Strategies for the Old are maps: ςO : G×G×S×R+ → {0; 1} but boil down to two di�erent payo�-relevant

cases: xi = α(gi, gj , sj) or xi 6= α(gi, gj , sj).
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4.1.1 Optimal Choice when xi = α(gi, gj , sj)

UO
(
µi = 0|xi = α(gi, gj , sj)

)
≥ UO

(
µi = 1|xi = α(gi, gj , sj)

)
⇔

ρ0(1− π0)x0 + ρP0 π0x
P
0 ≥ ρ1(1− π1)x1 + ρP1 π1x

P
1 (4.1)

This condition is almost always satis�ed except in some extreme cases that we rule out, as we are

interested in equilibria where Innocent players choose to match inside the Group. We therefore assume that

(4.1) holds and we will discuss it later.

4.1.2 Optimal Choice when xi 6= α(gi, gj , sj)

UO
(
µi = 0|xi 6= α(gi, gj , sj)

)
≥ UO

(
µi = 1|xi 6= α(gi, gj , sj)

)
⇔

ρ0(1− πP0 )x0 + ρP0 π
P
0 x

P
0 ≥ ρ1(1− πP1 )x1 + ρP1 π

P
1 x

P
1 (4.2)

When comparing Groups, agents are trading:

• Higher probability of being discovered as guilty: πP0 > πP1

• Against higher cooperation gains: x0 > x1

4.2 Young Players Incentives

Young players incentives depend on the idiosyncratic cost of giving they draw. By de�nition of the equi-

librium, under a certain cut-o� they will cooperate, above they will not. Obviously, those cut-o�s are

endogenously determined in equilibrium, as the limit cost such that players want to play innocent versus

guilty. Given that Ci ∼ U [0; C̄], we have

C̄(x) = ρ(x)C̄

with the following abuse of notation:
(
ρ(x0), ρ(x1), ρ(xP0 ), ρ(xP1 )

)
=
(
ρ0, ρ1, ρ

P
0 , ρ

P
1

)
.

4.2.1 Non-Sorting Equilibrium

∀x = x0, x1, x
P
0 , x

P
1 , U

Y (x|x = α(gi, gj , sj)) ≥ UY (0|x = α(gi, gj , sj))⇔

Cix ≤ δF
(
E1−q

[
λρ∆

]
− E1−q

[
(ρP − ρ)xPλ

])
(4.3)
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where Ep(Y ) is the expectation of a random variable Y when the probability to be matched in the

In-Group is p.

The left hand side can be considered as the cost of cooperation over defection, whereas the right hand

side as its gain.

Using the cut-o� costs, we therefore get four incentive constraints necessary and su�cient for a peer

punishment stationary equilibrium to exist. ∀x = x0, x1, x
P
0 , x

P
1 :

ρ(x)C̄x ≤ δF
(
E1−q

[
λρ∆

]
− E1−q

[
(ρP − ρ)xPλ

])
(ICNSρ(x))

it can also be written in the following way:

xρxC̄ ≤ δF
(
a0x0ρ0 + a1x1ρ1 + aP0 x

P
0 ρ

P
0 + aP1 x

P
1 ρ

P
1

)
(ICNSρx )

for some function of the parameters a0, a1, a
P
0 , a

P
1 > 0

4.2.2 Sorting Equilibrium

∀x = x0, x1, x
P
0 , x

P
1 , U

Y (x|x = α(gi, gj , sj)) ≥ UY (0|x = α(gi, gj , sj))⇔

ρ(x)C̄x ≤ δF E1−q
[
(1− π)ρx

]
− Eq

[
(1− πP )ρx

]︸ ︷︷ ︸+E1−q
[
πρxP

]
− Eq

[
πP ρxP︸ ︷︷ ︸ ]

−
(
Eq
[
πP (ρP − ρ)xP

]
− E1−q

[
π(ρP − ρ)xP

])︸ ︷︷ ︸ (ICSρ(x))

5 Typology of equilibrium

Both Sorting and Non Sorting equilibria are determined by four incentive constraints. Some can be slack

and other binding, but given that the right hand side of each incentive constraint is identical but the left

hand side can be ranked, some incentive constraints imply other, depending on the ranking of x0, x1, x
P
0 , x

P
1 .

This leads to the following typology of equilibria, ∀k = NS, S , for Non Sorting, Sorting:
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Case Conditions on x Incentive Constraints Proportions ρ

1 0 < xp0, x
P
1 < x1 ≤ x0 ICk

ρP0
, ICk

ρP1
, ICkρ0 , IC

k
ρ1 binding 0 < ρ0 < ρ1 < ρp1, ρ

P
0 < 1

2 0 < xp0 ≤ xP1 < x1 ≤ x0 ICk
ρP1
, ICkρ0 , IC

k
ρ1 binding, ICk

ρP0
slack 0 < ρ0 < ρ1 < ρp1 < ρP0 = 1

3 0 < xp1 ≤ xP0 < x1 ≤ x0 ICk
ρP0
, ICkρ0 , IC

k
ρ1 binding, ICk

ρP1
slack 0 < ρ0 < ρ1 < ρp0 < ρP1 = 1

4 0 < xp0, x
P
1 < x1 ≤ x0 ICkρ0 , IC

k
ρ1 binding, ICk

ρP0
, ICk

ρP1
slack 0 < ρ0 < ρ1 < ρp1 = ρP0 = 1

5 0 < xp0, x
P
1 < x1 ≤ x0 ICkρ0 binding, ICkρ1 , IC

k
ρP0
, ICk

ρP1
slack 0 < ρ0 < ρ1 = ρp1 = ρP0 = 1

6 0 < xp0, x
P
1 < x1 ≤ x0 ICkρ0 , IC

k
ρ1 , IC

k
ρP0
, ICk

ρP1
slack ρ0 = ρ1 = ρp1 = ρP0 = 1

6 Non Sorting Equilibrium and Crowding-out

During all this section, we assume that (4.2) holds and consequently that we are in a Non Sorting equilibrium.

Next section we will study when we are in a Sorting versus Non Sorting Equilibrium. We now focus on the

case 4 ,5 and 6 where ICNS
ρP0

, ICNS
ρP1

are satis�ed with strict inequality and ρP0 , ρ
P
1 = 1, as they already allow

us to draw interesting conclusions on In-Group/ Out-Group crowding-out. We are interested in the case

where x0 ≥ x1 even though in principle it could be the opposite. Thus:

ICNSρ0 is satis�ed ⇒ ICNSρ1 is satis�ed

but not the other way around.

6.1 Case 4: ρ0, ρ1 < 1 and ICNS
ρ0
, ICNS

ρ1
are binding.

Proposition 6. Whenever the following condition holds:

C̄ < δFE1−q(λ) (6.1)

a Non Sorting equilibrium exists where (x0, x1, x
P
0 , x

P
1 ), (ρ0, ρ1, ρ

P
0 , ρ

P
1 ) are such that:
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xP0 , x
P
1 ≥ 0

x0 > max(xP0 , x̃) where x̃ ≡ δFE1−q(λx
P )

δFE1−q(λ)−C̄

x0 ≥ x1 > max(xP1 , x̃)

ρP0 , ρ
P
1 = 1

ρ0 =
δFE1−q(λx

P )

x0

(
δFE1−q(λ)−C̄

)
ρ1 =

δFE1−q(λx
P )

x1

(
δFE1−q(λ)−C̄

)

(6.2)

and where ICNSρ0 , ICNSρ1 are binding.

Notice that there is no upper bound on x0. In-Group cooperation requirement can be in�nitely big, as

long as (6.1) holds, an equilibrium will exist. As x0 increases, rho0, the proportion of agents which will

cooperate when facing a required gift of x0, will decrease accordingly. As x0 goes to in�nity, ρ0 goes to 0

but there will always be low-cost agents cooperating. This relies on the assumption that the lower bound of

the idiosyncratic cost of giving is 0.

Proposition 7. In the equilibrium described in Proposition 6, there is no crowding-out between In-Group

and Out-Group "actual cooperation". We de�ne "actual cooperation" as the product of the required amount of

cooperation and the proportion of agents of a certain type of matches (In-Group, Out-Group) that cooperate.

Furthermore, In-Group and Out-Group actual cooperation levels are independent from both x0 and x1:

ρ0x0 = ρ1x1 =
δFE1−q(λx

P )

δFE1−q(λ)− C̄
(6.3)

The mechanism is the following: each change in x0, x1 is compensated by an adjustment in ρ0, ρ1. This

is due to the fact that ρ0, ρ1 < 1 and that ICNSρ0 , ICNSρ1 hold with equality. If x0 increases, the marginal

agent who waas cooperating drops and gives no gift, decreasing ρ0.

6.2 Case 5: ρ0 < 1, ρ1 = 1, ICNS
ρ0

is binding and ICNS
ρ1

is not binding.

Proposition 8. Whenever the following condition holds:
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C̄ < δF (1− q)λ0 (6.4)

a Non Sorting equilibrium exists where (x0, x1, x
P
0 , x

P
1 ), (ρ0, ρ1, ρ

P
0 , ρ

P
1 ) are such that:

xP0 , x
P
1 ≥ 0

min
(
x̃,

E1−q(λx
P )

qλ1

)
≥ x1 > xP1

x0 > max(xP0 , x̂(x1)) where x̂(x1) ≡ δF
(
E1−q(λx

P )−qλ1x1

)
δF (1−q)λ0−C̄

ρ1, ρ
P
0 , ρ

P
1 = 1

ρ0 =
δF
(
E1−q(λx

P )−qλ1x1

)
x0

(
δF (1−q)λ0−C̄

)

(6.5)

and where ICNSρ0 is binding.

Proposition 9. In the equilibrium described in Proposition 8, there is crowding-out between In-Group and

Out-Group actual cooperation. In-Group and Out-Group actual cooperation are constant with respect to x0

but Out-Group actual cooperation is increasing in x1 when In-Group actual cooperation is decreasing in x1:

ρ0x0 =
δF
(
E1−q(λx

P )− qλ1x1

)
δF (1− q)λ0 − C̄

(6.6)

ρ1x1 = x1 (6.7)

In this unbalanced case where ICNSρ0 is binding and where ICNSρ1 is slack, an increase in x1 does not

lead to a decrease in ρ1, and we lack the adjustment mechanism that was preventing crowding-out to occur

previously.

The following picture (�gure 5) illustrates the results of propositions (7) and (9). We show In-Group and

Out-Group actual level of cooperation, that is the level of the gift corrected by the cooperating proportion:

ρ0x0 and ρ1x1. They are drawned as a function of x1, for x0 > x̃, which ensures that full In-Group

cooperation cannot be reached and thus that ρ0 < 1.
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Figure 5: ρgxg as a function of x1, with x0 > x̃

For x1 > x̃, we are in case 4, any increase in x1 is washed out by a decrease in the related cooperation

proportion, ρ1. It follows that the future gains of cooperation are unchanged, and thus the incentives for

In-Group cooperation, when moving x1. Therefore x0ρ0 too stays constant as a function of x1.

Furthemore, those two levels are equal. You �nd this from the computations, or directly looking at the

incentive constraints (ICNSρx ). This comes from the fact that the unit cost of cooperation is the same in

intragroup and intergroups interactions. In this case, there is neither crowding-out nor crowding-in between

In-Group and Out-Group cooepration. The key factor here is that we are in a world of partial cooperation,

a proportion strictly less than 1 of agents cooperate inside and outside the group, because the required

level of cooperation is too expensive for high-cost individuals. It is understood throughout the population

that increasing or decreasing the In-Group or Out-Group targeted gift will drive more or less people out of

cooperation, independently from one another.

On the other hand, for x1 > x̃, we are in case 5, and we do see crowding-out between ρ0x0 and ρ1x1.

In this case, x1 is low enough such that everybody comply with the Out-Group target. ρ1 is a corner

solution, stuck at 1, and therefore cannot adjust downwards as x1 increases. This leads to a direct increase

72



of ρ1x1 = x1.

What may seem surprising is that ρ0 adjusts downwards proportionally, leading to a decrease in ρ0x0.

Looking at the incentive constraint (ICNSρ0 ), we see that the gains of future cooperation increase with x1,

which should lead more people into cooepration, thus increasing ρ0. This turns out to be a possible outcome

but not in an interior equilibrium (with respect to ρ0). Indeed, as ρ0 increases, the cost of cooperation (Left

Hand Side) increases less fast than its gain (Right Hand Side). With a higher x1 (uncompensated by ρ1),

either we jump to full cooperation equilibrium (ρ0 = 1), and (ICNSρ0 ) holds with strict inequality, or we stay

in a partial cooperation equilibrium where (ICNSρ0 ) holds with equality and rho0 adjusts downwards. As

future gains of cooperation increase, today's cooperation decreases, because we are focusing on the partial

equilibrium, the worst equilibrium, and agents are too small to take into account the e�ect of their actions

on the population rate of cooperation. And this proposition, in the spirit of Folk Theorems, tells us that

as the best equilibrium becomes better, the worst equilibrium becomes worse. The situation is not totally

symmetric as "becoming better" does not refer to a change in equilibrium payo�s due to a change in the

exogenous variables. Here the exogenous variables stay �xed and equilibrium quantities only are moving

with respect to one another. But we can keep the intuition: as the payo�s of cooperation increase, and thus

punishment becomes more costly (for the punished agents), it is easier to have agents bloked in a suboptimal

behavior (on another dimension, ρ0).

6.3 Case 6: ρ0 = 1, ρ1 = 1, no Incentive Constraint is binding.

Proposition 10. A Non Sorting equilibrium exists where (x0, x1, x
P
0 , x

P
1 ), (ρ0, ρ1, ρ

P
0 , ρ

P
1 ) are such that:

xP0 , x
P
1 ≥ 0

min
(
x̃,

E1−q(λx
P )

qλ1

)
≥ x1 > xP1

δF
(
E1−q(λx

P )−qλ1x1

)
δF (1−q)λ0−C̄

≡ x̂(x1) ≥ x0 > xP0

ρ0, ρ1, ρ
P
0 , ρ

P
1 = 1

(6.8)

and where no Incentive Constraint is binding.

Proposition 11. In the equilibrium described in Proposition 10, there is a new form of crowding-out: the
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threshold for full versus partial cooperation x̂(x1) of x0 decreases with x1, or the maximum value of x0 for

full cooperation (with ρ0 = 1).

It means that when x1 is small enough such that everybody cooperates when facing a required gift of

x1 (that is when x1 < x̃), and when this constraint is strict, it gives more room for cooperation inside the

group,which you can see considering the x0−threshold value for full versus partial cooperation,

x̂(x1) ≡
δF
(
E1−q(λx

P )− qλ1x1

)
δF (1− q)λ0 − C̄

x̂(x1) > x̃ for x1 < x̃ but decreases towards x̃ as x1 increases until reaching:

x̂(x1) = x̃ when x1 = x̃ (6.9)

x̂(x1) is stricly above its level when there is partial cooperation on both dimension x0 and x1. Further-

more, the extra room for In-Group cooperation, x̂(x1)− x̃, is increasing as x1 becomes smaller.

We can illustrate this in �gure 6.

Figure 6: ρgxg as a function of x0, with x1 < x̃
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We draw actual levels of cooperation ρ0x0, ρ1x1, in case 5 and 6. In this picture, x1 < x̃, to ensure

that there is full Out-Group cooperation (ρ1 = 1). We also draw a line showing the value of partial actual

cooperation of case 4 (that is when x0 and x1 are high enough so that ρ0, ρ1, < 1, and that any increase in

x0, x1 is compensated by a decrease in ρ0, ρ1). We remind that this value is as given in (6.3) and represents

our reference point.

We see that ρ0x0 increases with x0 until the threshold x̂(x1) from which ρ0 starts decreasing below 1

and actual cooperation becomes constant. This is the maximum amount of cooperation that can be reached

within the Group.

Now, consider the following picture, �gure 7, where x1 is higher, but still under x̃

Figure 7: ρgxg as a function of x0, with x1 < x̃

The threshold of full In-Group cooperation, x̂(x1), has decreased, and as a result the maximal level of

cooperation that can be sustained within the group, ρ0x̂(x1) = 1× x̂(x1) too. Also, Out-Group cooperation

has increased proportionaly. Thus In-Group and Out-Group cooperation are getting closer to one another

and to the benchmark level of case 4.

The limiting point of this phenomenon is when x1 reaches x̃, and then x̂(x1) decreases to x̃. We see
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now that the maximal amount of cooperation is the same within and across groups. In other words, the

maximum amounts of cooperation that can be sustained within and across groups crowd each other out.

7 Sorting versus Non Sorting Equilibria

In this section we focus on the case where ρ0, ρ1 < 1 and ICNSρ0 , ICNSρ1 are binding, comparing Sorting and

Non Sorting equilibria. Equilibria are of the following form, for k = NS, S:

Proposition 12. Whenever the condition (Exk) holds:

a k- equilibrium exists where (x0, x1, x
P
0 , x

P
1 ), (ρk0 , ρ

k
1 , ρ

P,k
0 , ρP,k1 ) are such that:

xP0 , x
P
1 ≥ 0

x0 > max(xP0 , x̃
k)

x0 ≥ x1 > max(xP1 , x̃
k)

ρP,k0 , ρP,k1 = 1

ρk1 = x0

x1
ρk0

(7.1)

and where ICkρ0 , IC
k
ρ1 are binding.

Existence constraints (Exk), threshold levels x̃k and cooperation proportions ρk0 , ρ
k
1 are di�erent across

equilibrium types.

Existence Constraints

ExNS : C̄ < δFE1−q(λ)

ExS : C̄ < δF

(
(1− q)(πP1 − π0) + q(πP0 − π1)

) (7.2)

The two equations have the same �avor in the sense that the expression (1 − q)(πP1 − π0) + q(πP0 − π1)

represents the gains in terms of probability of being punished when cooperating versus when deviating,

weighted over the probability of success or failure of the directed search.
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Threshold levels

x̃NS =
δFE1−q(λx

P )

δFE1−q(λ)−C̄

x̃S =

δF

(
xP0

(
(1−q)π0−qπP0

)
+xP1

(
−(1−q)πP1 +qπ1

))
δF

(
(1−q)(πP1 −π0)+q(πP0 −π1)

)
−C̄

(7.3)

Cooperation proportion levels We draw in (�g: 8) ρNS0 versus ρS0 and ρNS0 versus ρS0 for the following

parametrization:

q δ F C̄ π0 π1 πP0 πP1 x0 x1 xP0

0.4 0.99 10 2 0.01 0.1 0.9 0.7 15 5 5.99

Figure 8: ρNSg versus ρSg

In both cases, the proportion increase as a function of xP1 (as the reward of cooperation minus deviation

decreases all other things equal, proportions have to increase to keep the two binding incentive constraints

ICkρ0 , IC
k
ρ1 satis�ed). But our numerical analysis yields:
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∀g = 0, 1, ρNSg > ρSg (7.4)

7.1 Drivers of Equilibrium type

Figure 9: Constraints for Innocent and Guilty players, Sorting

Given in this kind of equilibrium where ICkρ0 , IC
k
ρ1 are binding and the other constraints are slack, we

have ρ0x0 = ρ1x1 is a constant with respect to x0, x1 (from Proposition (7)). With numerical simulations,

we see that xP0 , x
P
1 are determining variables. We draw how the constraints for Innocent Players (4.1) and

for Guilty players (4.2) vary as a function of xP1 , for di�erent x
P
0 , with the Sorting (�gure 9) and Non Sorting

(�gure 10) values for ρ0, ρ1 as a function of the other variables. We take the same parametrization as before.

When the constraint of guilty players (line labeled "Cons1" in the two above mentioned �gures) is positive,

Guilty players choose to direct their search inside the group, when it is negative, outside the group. The

results are presented in �gure 9 for the Sorting equilibrium, and in �gure 10 for the Non Sorting equilibrium.
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Figure 10: Constraints for Innocent and Guilty players, Non Sorting
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We ask whether there can be multiple equilibria, that is, whether for some equilibrium allocations, both

a Sorting and a Non Sorting equilibria could exist (as ρ0, ρ1 are di�erent in both cases). Our numerical

simulations suggest it is not the case.

7.2 Welfare analysis

We now want to compare the utility of Innocent and Guilty agents under both equilibria. Again we resort

to numerical analysis. We draw three utilities per graph: the counter-factual utility in case of Non Sorting

equilibrium (green), the counter-factual utility in case of Sorting equilibrium (red), and the actual utility

(purple), depending on whether the equilibrium played at those values of the variables is Sorting or Non

Sorting. Therefore the actual utility can be superposed with the Non Sorting Utility, the Sorting Utility,

or be zero if no equilibrium exist for those values (in the range of equilibria where ICkρ0 , IC
k
ρ1 and only

ICkρ0 , IC
k
ρ1 are binding).

Figure 11: Utility of Innocent players, Balanced x0, x1
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Figure 12: Utility of Innocent players, Unbalanced x0, x1

We stress the following observations:

• Utility under Non Sorting Equilibrium is higher than under Sorting Equilibrium, both for Innocent

and Guilty players, but it is more striking for Innocent players. This is due to the fact that under

Sorting, a Group can get rid of its own Guilty players who go outside, but receive the Guilty players of

the other Group, who also chose to go outside. This is relying on the assumption that there are only

two groups in the society and that going Out-Group means joining the other Group. The question for

agents is thus whether they are better-o� living with their own Guilty players or the ones of the other

Group. Given the In-Group technology is more e�cient, players are better-o� when matching with

their own Guilty players that they can recognize as guilty more often.

• In a non-sorting equilibrium, crowding-out operates not only in terms of cooperation, but in terms of

interactions. More interactions happen within groups, and less across grouops. But it also means that
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Figure 13: Utility of Guilty players, Balanced x0, x1
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Figure 14: Utility of Guilty players, Unbalanced x0, x1
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each intergroup interaction is more cooperative (as the individuals who drew a high cost of cooperation,

and are therefore likely to deviate, choose to stay inside the group). On the other hand, in a sorting

equilibrium, there is no interactions crowding-out, but intergroup interactions are on average less

cooperative.

• The fact that Sorting Equilibria arise even though Guilty players would be better-o� in a Non Sorting

equilibrium present evidence of the externalities at play in the model: Guilty players are better-o�

going outside of the Group but they do not internalize the e�ect they have on other Guilty players

going out of the Group.

• Non Sorting equilibria seem to arise for lower value of xP1 than Sorting equilibria. As xP1 increases, the

Out-Group pay-o� become too attractive for Guilty players to stay inside. As Non Sorting equilibria

yield higher payo�s than Sorting equilibria, we can therefore ask whether agents are always better-o�

by diminishing punishment (once punishment is enough to sustain cooperation), as is the case int

traditional models of peer punishment.

8 Conclusion

We �nd that crowding-out between intragroup cooperation and intergroup cooperation may or may not occur.

Sorting equilibria can arise even though they are Pareto-dominated by Non Sorting equilibria (at least under

our numerical simulations), shedding light on the existence of negative externalities non internalized by

Old Guilty players. We aim at furthering this work in progress by formal proofs for the last section, and

comparative statics with respect to the parameters. We are in particular interested in the role of q: how

does the imperfection of the matching process impact our results?
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