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Appendix A--The Fundamental Region

The objective is to verify that the fundamental region
is as described in section three. This is done via a
series of figures.

Figure (A-1) shows that ¢ > 0 along g=0 for r > -1/(N-1);
& < 0 along g=1 and that # > 0 for r < 0 and sufficiently
small in absolute value. Let us verify these. For g=0

from (2-15) and (2-16) describing g

g= (bsRB) (1+(N-1)x)N (A-1)
which is positive for r > -1/(N-1). Along g=l

k 2

g = -(bSR B) (L+(N-1)x) (A-2)
which is negative. Along r=0 from (2-18) describing T

i = bzé{azﬁ,[(wg)z + (1))%) - m son 1) (A-3)
which is strictly positive when r=-¢ since by (2-16)

vg and ﬂi don't vanish simultaneously.

Now let us verify that any path starting with r not

too negative reaches the shaded region 0 < g <1 r>0

in figure (A-1) in finite time. This requires two steps:

(1) showing that r < 0 but small enough in absolute



~1/(N-)

Figure(A-1): Simple Global Featurés of the Flow
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value implies r > 0 is reached in finite time and that

(2) the shaded region 1is reached from any point in the

regiong > 1, r > 0 in finite time. The latter is easy.

From (a-2) along g=1 r > 0 sup(q) = §" < 0; from (3-2)

and (3-5) in the text this implies that forq>1 r2>20

sup (q) = qm also. Thus starting at g in this region it

takes no longer than (q—l}/|qml to reach the shaded region.
Showing r > 0 reached in finite time from r < 0

and small is slightly more difficult. By (A-3) there is

a function h(g) such that for 0 > r > h(g) *(r,q) > 0.

Since T is continuous in g and r for r < 0 and since

lim #(r,q) > 0 ;
r+0 (A-4)
r<0

again by (A-3), we may assume h(g) is a cohtinuous function
and that 0 > r > h(qg) implies ¥ (r,q) > € for some fixed
e > 0. Since h(g) is continuous we can also assume h(q)
constant and greater than -1/(N-1) on 0 < g ¢ 1 and
_strictly increasing for q > 1. This is illustrated in
figure (A-2). Examining that figure and observing as
above that for g > 1 r > =-1/(N-1) g < 0 we see
that the system once in the region 0 > r > h(g) can leave
only if r becomes non-negative. But this takes no more
time than 1/e(N-1).

Finally we study the shaded region. First, we
show that every path in the shaded region remains bounded.

For if not along that path r + ® and it must be that



Figure(A-2): The Case r<0

observe that if h,(q) has t>¢ for 0>r>hl(q)
then t>c for 0>r> 2(q) as well



But as r -+ « from the equations of

/4 is unbounded.
nd (2-18) and the profit derivatives (2-16).

motion (2-15) a

)

TV pigicd |
ﬁ +( b62 rnk(Nnj + (N %}Fk)
a ") T Zmen e
3 a3
=( s ) e (A-5)
hoen (-1 2 E

Next observe that
(A-6)

a contradiction.
w253k £2/8%) [ (N2+2n-2)g - N%1q

It is easy to check that for

114

from (2-16) and (2-18) .
(A=-7)

2
qr?_zN > 0
NS + 2N = 2

0 <g¢c« qr implies 9%/3r < O. This léads us to figure (A-3).
The curve =0 from (3-6) is sketched. In the shaded
region £ < 0. Note that the shaded region may reach the
q=0 axis. This doesn't affect the analysis. AS indicated
in the figure for some I >1 and x 2 o qr <g<1l
d--this can be verified from figure (3-2)
Also for 0 < q < qr and r below the =0

g < 0 must hol
in the text.
curve © > 0. I next show how to construct the fundamental

region.
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Consider first the segment r=r qr < g <1l. Every
path beginning here is bounded and g < 0 whenever the
path is above X and to the right of qr. This implies
that there is a continuous curve C1 beginning at g=1,

=r which meets the shaded region in figure (A-3) and
which the flow does not cross from below. Let rT be the
r-coordinate where C, meets the shaded region. This is
shown in figure (A-4).

Next consider the path beginning at r, > rT shown
in figure (A-4). Since £ > 0 and the path is bounded
above, this curve meets the shaded region at some ordinate
rE > Iy 2 rT. Since this is an integral path it is not
crossed by the flow. Comparing figures (A-3) and (A-4)
we see that the piecewise continuous curve made up of
CO' the segment r=rg, qT < q 5'qr, the segment q=qr

m m

rp $r I

crossed only from above. This defines the upper boundary

and the curve Cy connects g=0 and g=1 and is

of the fundamental region shown in figure (3-1).

Tt remains to show that paths beginning above the
- fundamental region F reach it in finite time. To show
this we observe that the w-limit set of such a path is
bounded, and therefore a compact non-enpty set W. We now
apply some results on planar systems from Hirsch and
Smale [8] chapter 11l.

We may as well assume wNF = ¢, otherwise the path
reaches F in finite time since no limit point lies on the

boundary of F. By the Poincaré-Bendixon theorem either W



Figure(A-3): Behavior of the Reaction Coefficient
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Figure(A-4): Bounding the Fundamental Region
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containé a steady state or it is a closed orbit with a
steady state in its interior: either case implies that
the region above F contains a steady state. However,
every steady state has r < 1 < ro by the results of
section three and this contradiction establishes the re-

guired result.



Appendix B--Instability with Negative Response

The objective is to show that any steady state with
'r < 0 is unstable.
The starting point of the analysis is the equation of

motion for ¢. From (2-15) and (2-16) this is
§ = (b6k 8) (1+(N-1) 1) (¥-(14N) g- (N-1) rq) (B-1)

Inspection shows ¢=0 either when r = -1/(N-1) or along

the curve given in (3-2) as

N - (14+N)g | -
= ~7m-1a | (B-2)

Since this curve strictly decreases and r » -(1+N)/(N-1)
as q > ©, we may assume 0 > r > -(14N) /(N-1). There
are three cases 0 > r > -1/(N-1); r = -1/(N-1) and

"=1/(N-1) > r > - (1+N)/(N-1).

case 1: € > r > =1/(N-1)
Then any steady state lies along (B-2) implying
N < g < 1. Using (2-16) and (2-18) to find the motion of

r, and substituting in (B-2) shows the steady state is at

q = % t — + M (B~3)
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where M is as in (3-9). Since M > 0 either

q>1 ; (B-4)
or
g< (1/2) =gt < g - (B-5)

So in either case there is a contradiction. Thus in

case (1) there can be no steady state.

Case 2: r = -1/(N-1)
Using the given value of r and the equation of motion

for r from (2-16) and (2-18) shows that at a steady state
2 2 2 I '
[N“-2]q° - [2N"-N-2]q + N(N-1) = -M (B-6)

where M > 0 is a constant. Inspection of the polynomial
in (B-6) shows that the steady state value of g must then

lie in the interval

NéN—l) y 5 N = qr | (B-7)
N™ - 2 N° + 2N - 2

l1 >qg°>

where qr was defined in appendix (A) in (A-7). But the
analysis of that section, and (A-6) in particular, showed

that q > qr implies 23f/3r > 0. On the other hand from
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section three equation (3-5) 94/d3gq = 0. Thus

9f/3r + 9G/3g > 0 implying instability.

Case .3: -1/(N-1) > r > (14N)/(N-1)

The steady state then lies along (B-2) implying g > 1.
Equation (3-5) then shows adxaq > 0 while (A-6) shows
since q > qr 3R/3R > 0. Thus éﬁ/aq + OR/OR > 0

contradicting stability.
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Appendix C--Stability with Positive Response

The objective is to verify that the steady state at
qS is stable, that at quj;unstable. Observe that these

steady states occur at the intersection of the curves g=0

from (3-2)
_ N - (1+N)g _
* m-1q (C-1)
and #=0 from (3-6)
(mNzlEzﬁzgt) - [(N242N42) g - 2N(14N)g + N%]
r 4 =13 (C-2)

[(N2+2N—2)q = Nzlq

It is straightforward to verify that if these curves inter-
sect at all and qs#qu they intersect exactly twice at

qs and qU. By definition qs is the first intersection of
these curves, qU the second. From (3-5) at a steady

state 9§/3q < 0 while 3#/3r < 0 if g < g 9f/3r > 0

1f g = qr. Observe that the curve (C-2) has a pole at

qr and is continuous on 0 < q < qr and on qr < q. This
information suffices, using some results from Levine [12]
section (2) to determine the stability of the steady states:
for gq < qr a steady state is stable if and only if the

curve (C-2) intersects the curve (c-1) from below; for



64

q > qr a steady state is unstable if the curve (C=2)
intersects (C-1) from below, stable if from above and in
addition 3§/dq + 9£3r < 0. However, the later condition
always holds for b small enough-~3G/dq < 0 and is of
order b while 3r/3r is only of order b2.

Consider first g < qr. As g + 0 (C-1) approaches
(N/(N-1)) (1/q) while (C-2) approaches
{[(mNzlEzﬁsz) - N2]/N2}(l/q) from which it is seen as
g + 0 (C-1) lies above (C-2). Thus if qs < qr, since the
first intersection of curves must be with (C-2) hitting
(C-1) from below, qs is stable. If qU < qr it is at
the second intersection which has (C-2) hitting (C-1)
from above (since both curves are continuous on 0 < g < qr)
and is unstable.

Taking the other case gq > qr from (C-2) it is clear
that as g = ® (C-2) goes to + «, while from (C-1) the
U

g=0 curve becomes negative. Thus if g > qr it is at

the second intersection with (C-2) hitting (C-1) from below

8 5 qr it is at the first intersection

and is unstable; if g
and 1is stable.

This line of reasoning is illustrated in figure (C-1).



Figure(C-1): Intersections of 4=0 and =0
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Notes

(1) See for example Laitner 91
(2) Supergames are a concept due to Friedman [2].

(3) For a discussion of this see Friedman [3]. Marschak
and Selten [13, 14] or Radner [15]. The relevant
equilibrium concept is that of perfect equilibrium
found in Selten [18]. Similar results hold for static
conjectural equilibria discussed by Hahn [6] and
Seade [17].

(4) The relevant environment is a continuous time model
with discounting and adjustment costs.

(5) Non-identical firms and non-quadratic profit functions
are examined in Levine [11].

(6) This differs from the formulation of Marschak and
Selten [14] in that firms respond the same way to
both increases and decreases in output by opponents.
In the differentiable framework here there is no
advantage to kinked response: the optimal response to
punish opponents for cheating and the optimal response
to reward them for colluding are the same.

(7) Reactions apply only to future changes in output and
do not apply retroactively to past deviations by
rival firms. This distinguishes the present model
from the formulation in Guttman [5].

(8) More general technologies are examined in Levine [11].
1f firms face a capacity constraint I assume that it
is sufficiently large that it is not binding in com-
petitive equilibrium.

(9) One insignificant difference between the two approaches
is that when adjustment costs are explicitly introduced
23 must include an estimate of the present value of
future adjustment costs. Fortunately Levine [10] shows
that in the present case the only effect of this is
to introduce some irrelevant constants into the adjust-
ment equation.

(10) A mathematical technicality of no econcmic import
is that cJ(RJ) is not differentiable when Rﬂ=0.
This is ignored.



(11)

(12)
(13)

(14)

(15)

With this simplification the model is formally and
conceptually similar to that of Guttman [5]. I am
grateful to Dr. Guttman for making available un-
published research conducted jointly with Michael
Miller along lines similar to those here.

See Hirsch and Smale [9] chapter 16.

See Levine [11] for reéults with asymmetric initial
conditions.,

For elementary catastrophe theory see Zeeman [21]
especially essays one and ten.

See Scherer [16], pp. 158-164 for example.
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