CHAPTER IT:

LONG RUN COLLUSION IN A

PARTIALLY MYOPIC INDUSTRY
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0. Introduction

Will partially myopic firms collude in the long ;un?
In the first chapter we saw in a quadratic symmetric example the
absence of frictional costs implies that they will. This chapter
studies an unrestricted technology without frictional costs.
I ask: how are long run steady states of the adjustment Process
related to pareto efficient outcomes of the static game? The
answer has two parts:

0 In "almost all" games steady states and outcomes satisfying
the first order conditions for static pareto efficiency "almost”
coincide.

0 The general stability analysis is intractible. However, it is
possible to show that with identical firms and symmetric initial
conditions a steady state is stable if and only if it is (1ocally)
efficient.

The paper has four sections. Section one reviews the model
of chapter one. Section two studies steady states. Section thfee
focuses on the stability of steady states. Section four discusses
the implication of an approximation introduced in section one.

The final section summarizes the conclusions of the paper.
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1. Review

There are N firms, entry is prohibited and each firm j controls
. © =
its own output 3. The output vector X is presumed to lie in X,

an open subset Df]RN.

By assuming X is open behavior on the
boundary is ignored.
Attention is limited to the case in which communication between

firms can occur and there are no counter-reactions. Thus, from

(1-2) of chapter one the movement of x is given by
X3 = 5 R
2 MY (1-1)

where y3 are the autonomous output controls. From (1-3) of chapter

one the reaction coefficients move according to

-

The profits of firm j are given by a smooth function ™ X R.
Note that there are no frictional costs of reacting. Let Hi=8ﬂ3/8xk.
To insure that firms are able to affect opponent's profits it is

assumed that for x € X and j#k ﬂi(x)<0. Let T be the vector

of profit functions, T be the column vector

. N ;
(ni) , the row vector (nk) and 7 be the matrix with rows .

S1nce ?(,15 open the static game w1th profit functions wJ may not have
any efficient points. To rule out degeneracy at least some point

xeX should satisfy the first order conditions for pareto efficiency.
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As a second regularity condition it is assumed that for some X efXL
det (m(x))=0. In cection two it is shown that this is in fact the first
order condition for efficiency.

Firm j's intertemporal preferences are described by a discount rate
p”. The corresponding discouﬁt factor is 5j B 1/oj.

The behavioral model is the same as in chapter one. As in

i_gd

i -
equation (2-4) of chapter one the strategies ¥ﬂ=y3 and B =5%

are given by

- . N 43

3 . xd 3 k

" oA

g = bk) (1-3)
aRk

where the bki are the partial adjustment coefficients. The

approximate present value of income from (2-12) in chapter oﬁe is

B A P N
Wedds6hd v 7 REKRS T RMK (1)
. 9.=1 k=1 m-_-l
Thus by (1-3) and (1-4)
Hand B pa S gk o2
i L SENCMEY ) ba-)
9\=1 R:l

which as in chapter one simplifies to

ik
i (1-6)



where bﬁjkg is normalized to one by choosing appropriate units

-

J and the term of 0(b2) is dropped. Section four discusses

for w
the implications of this approximation in greater detail.
Finally from (1-3) and (1-4) the motion of the reaction

coefficients is

o = pxd sAd/aRd
Ry = bkk 3A faRk
. . . N N
- A O m _k k m _J
b(s") kil ¥ Ream* 1y T Ry ]
m=1 m=1

k

J

A N ; ;
Jr k m _J J
bﬂk[ﬁj Z Rk T + ™ y (1-7)
m=1

where the constant n‘] = (53)2kﬂ and use is made of the normalization

rule bajkg. = 1.
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2. Equilibrium

The remainder of the papér agqresses the fo%]owjng question: what
is the relationship between stable steady states of the dynamical
system described in the first section and pareto efficient outcomes of
the gamef* Mathematically this divides into two issues: how are steady
states related to outcomes which satisfy the first.order conditions for
pareto efficiency (called FOPE), and how are the stability conditions
related to the second order conditions for pareto efficiency? This
section takes up the first issues and yields the following conclusion:
in "almost all" games which satisfy the required regularity conditions
steady states and FOPE coincide "amost exactly."” The following section
examines the relationship between stability and local efficiency.

A point x is supportable as a steady state (or is simply called a
steady state) if there is some reaction matrix R suéh that x(x,R) = 0.
In this case the dynamical system.is motionless for all time regardless
of whether y = 0. There are two possible types of steady states. If
y =0 by (1-17) x = 0. This is called an autonomous steady state to
reflect the fact that the autonomous action control variables y are
stationary. Steady states at which y # 0 are called non-autonomous. The
first half of the section examines autonomous steady states and shows
that they are all FOPE. As a partial converse in "almost all" gamés
the FOPE form an N-1 dimensional set of which at worst an N-2
dimensional subset fail to be autonomous steady states. The second
half of the section examines the possibi1ity that some non-autonomous

steady states might fail to be FOPE and demonstrates that in "almost



all" games such exceptional steady states are a set of isolated
points.. The section concludes by showing graphically the relationship

between FOPE and steady states in the "generic" case.

Autonomous steady states are characterized by the conditions y = 0

ﬁ = 0. To analyze the set of points x which are supportable as
autonomous steady states R must be eliminated from these equations.
The resulting condition will then be contrasted with the first order
efficiency conditions to show that autonomous steady states are FOPE.
Before prov}ng a partial converse a digression will give a mathematical
definition of "almost all" games.

Equating the expressions for y and R from (1- 6) and (1- 7) to zero

gives the condition for an autonomous steady state

i |

5 ngﬁg =0 § % Louaes N (2-1)

p=1

. N .

ﬂf( T 11‘; RE=0 j=k=1,..., N  j#k (2-2)
p=1

"Since the nﬂ # 0 (by assumption) they can be eliminated from (2-2) to

yield the equivalent condition

JpP - C oL L .
oRe = 0 Jo k=100, N j#k (2-3)

m

1

TM =

It is instructive to combine the Nz equations in (2-1) and (2-3) into
the N vector equations

W =0 k = 1,...,N (2-4)
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where Tr={'rr11} with j subscripting rows and k subscripting columns and RRZ(RJL;)?=1
If it is to be possible to solve (2-4) for N vectors satisfying

Rt = 1 then 7 must be singular and admit in its null space a vector

v = (A with 3 # 0 for any §. 1 will call such a matrix

regular singular. If = is regular singular setting Rﬂ = YJ/Yk solves

(2-4) and satisfies the restriction Rt = 1. So it is necessary and
sufficient for x to be an autonomous steady state that #(x) be regular
singular.

How does this compare with the first order condition for pareto

efficiency? At a pareto efficient point for a non-zero vector of

. N .
weights y = (“3)§=1 the weighted sum Z anJ must be maximized. The
J=1
first order conditions (which must be satisfied since %% is an open
 set) are '
N P
¥ W =0 K=1,.0., N (2-5)
J=1

which in matrix notation is

w'vw =0 ' (2-6)
or the condition that = be singular. This condition w.ll be taken as
the definition of a FOPE, the restriction that the weights uj have

the same sign being viewed in this terminology as part of the second
order conditions for efficiency. This definition is illustrated
graphically at the end of the section. Note incidentally the
difference between the weights v corresponding to reactions and the

weights u corresponding to utility weights: the former satisfies
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ry = 0, the latter p'= = 0.

A]f autonomous steady states are FOPE. The converse is false since
not all singular matrices are regular singular. To proceed further we
must digress to give some technical definitions. By an L dimensional
set is meant a finite collection of L or lower dimensional manifolds at
least one of which has dimension L. For example in R3 the set
consisting of the xl - x2 plane and the x3 axis is a
two-dimensional set. In appendix (A) it is shown that the set of
singular NxN matrices is an N2 - 1 dimensional set. Since singular
matrices n-satisfy the single restriction det («) = 0 and lie in an
Nz dimensional space this should not be too surprising. A singular
matrix = which is not regular singular satisfies the additional
restriction that every vector in its null space has yj = (0 for some
j. As appendix (A) demonstrates these matrices lie in a N2 - é
dimensional set.

That most singular matrices are regular singular unfortuﬁate1y does
not imply that in an arbitrary game most FOPE are autonomous steady
states. In a linear game =(x) does not depend on x and it could well
be that = is non-regular singular so that the entire game consists of
FOPE which are not autonomous steady states. This examp1e is clearly
rather special and it would be useful to assert that this does not
happen in "most" games.

It is now necessary to introduce some technical concepts from
differentiél topology. References are Guillemin and Pollack [6],

Milnor [15] and Hirsch [7]. The map = is said to meet a submanifold S



of a manifold M transversally iff for each x with m(x)eS the tangent to
x at x and the tangent space to S at 7tx) span the tangent space to M
at =(x). It meets an L dimensional set S transversally in an N2
dimensional space M if it meets eéch component manifold of S
transversally. In this case the implicit function theo;em shows that
the set of x such that =(x)eS has the "right” dimension--that is,
dimension N - (N2 - L). Thus if = meets both the singular and
non-regular singular matrices transversally the FOPE are N - 1
dimensional and the points which are not autonomous steady states are
confined to an N - 2 dimensional subset. Note that an L-dimensional
set may be empty, although not in the case of FOPE which are assumed to
exist.

As the example above shows not a]i games meet a given set .
transversally. "Most" games, however, do have this property. Let G be
the set of all C2 mappings e(.-->IRN and let GR be the mappings = which
satisfy the regularity conditions wi{X] < 0 for any j # Kk, xeX and for
some xeX det(w(x)) = 0. Then G is the set of all games and GR
the set of regular games. A topology‘can be introduced on G and G
by specifying the neighborhoods of each game v. Let K = Ki bpe a
covering of gﬁ with compact sets such that no point lies in more than a
finite number of these sets and let ¢ = e€; be positive real |
numbers. A neighborhood U(+", K, €) of x  corresponding to K

and ¢ are all games 7  satisfying

sup {[¥7(x) - Aoal, R - gl [ - ) [} <o

xKi3 3, ko2 = 1,..., N (2-7)



that is 7" must be close to n° in the assigned payoff and its
first two derivatives. This is known as the Whgtney C2 topology.

A residual subset in G is the countable intersection of dense open
sets. InlR an example of a residual set is the set of irrational
numbers-lthEy are the intersection of the sets consisting of the real
line with one rational point deleted. It can be shown that any
residual subset of G is dense, and by almost all games in G is meant
all games in some residual subset.

A theorem known as the jet transversality theorem asserts that
almost all maps = <G have derivative maps r that meet a given set
transversally. This paper examines only regular games and requires a
definition of residual in GR rather than G. In appendix (B) it is
shown that if D is dense in G then DﬂGR is dense in GR. In
light of this a subset of GR is called residual iff it is the
intersection of a residual set in G with GR. This gives the
desired conclusion that almost all games in GR (and in particular
all games in a dense subset) have derivative maps which meet a given
set transversally.

The preceding discussion is conveniently summarized in two

propositions.

Proposition (2-1): If Sis anlL dimensional set then for almost all
games the set of xeX. which satisfy the restriction n(x)eS is

N - (N2 - L) dimensional.
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Proposition (2-2): All autonomous steady states are FOPE. In almost
all gémes FOPE are N - 1 dimensional and are all autonomous steady

states except possibly in an N - 2 dimensional set.

Exceptional Steady States: At an autonomous steady state y = 0, and

the first order conditions for parefo efficiency are satisfied. It is
possible, however that X = 0 and y # 0 in which case the preceding

analysis does not apply. Here it is shown that in almost all games

there are at most an isolated set of points which are steady states but
There are two steps in this undertaking: first R is eliminated from
the equations % =0 R = 0; then an application of Proposition (2-1)
gives the desired genericity result.

The conditions for a (not necessari1y autonomous) steady state are
given by equating the expressions for ; and ﬁ from (1-1 ) and (1-7) to
zero
)_E. Ry =0 5= 1,0, N (2-8)
k=1
. s+ N . .

IR AR e i#k (2-9)
p=1

To eliminate R from these equations use ni F03Jj# k to define

Jo 1ok (2-10)

k -n‘.]j/n‘l]( J#K

Then (2-9) is equivalent to

N ; ;
Joop o JKI :
5: % Ry =¥ % Jj#k (2-11)
p=1
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The equation (1- 6) defining yk s
k.3 &P - (2-12)
y = E;& Yo K

which can be expressed as

N

k. p_ kk : :
2: n. Rp =y A (2-13)
o<1 p k Kk
since A: = 1 by definition. The N2 equations (2-11) and (2-13) can be

combined into the N vector equations
. | £
Throughout the remainder of this discussion it is assumed that the

steady state is not a FOPE. In this case = is non-singular and (2-14)

can be solved for the reaction coefficients.

Ry =¥ m " (2-15)
The equation for RE (which is one by definition) is

1=RE - g ot LW (2-16)
from which the autonomous controls are

yk = ll(n‘llk ¢ (2-17)

Observe that this implies yk # 0 for any k, which is consistent
with the earlier finding that the steady state must be non-autonomous
since it is not a FOPE.

The N vector eguations (2-15) can be rewritten using (2-17) as the

N2 scalar equations

Ro= h g/ Lh (2-18)
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So far the first steady state condition x = 0 given in (2-8) has not
been used. To eliminate R from the*steady state conditions (2-8) and

(2-9) substitute (2-18) into (2-8) to get the necessary conditions

N &
5 GH ath = 0 (2-19)
k=1

which since v-l is non-singular is equivalent to

N
Y o " = o (2-20)
k=1

A useful implication of (2-20) is that x # 0 and ) # 0. 1f not

since for j # k xi = - n%/ﬂi it must be that n% = 0 and so kﬂ = Q for

every k #Jj. In this case since At = 1 by definition

N ,
T i 22 =

k=1

Kt bk 4 %5 0  (2-21)

contradicting the steady state condition (2-20).

Let Hg be the set of matrices n which satisfy (2-20). If HE is an
N% dimensional set then by Proposition (2-1) almost all games will have
only an isolated set of points x at which n{x)eHg.‘ Define the

surjective mapping U:Hg -=> Hﬁ by
j j -1,k 2
b = san () /LT ] : (2-22)

Since ut # 0 this map is smooth. To show that HE is N2 - N dimensional
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it suffices to show that HE is N - N dimensional and diffeomorphic to

Hg. Since U is smooth HH and4ﬂE are diffeomorphic provided U has a

smooth inverse.

Let e be a vector of ones. By (2-20) if UeH)  Ue = 0. This shous
that HE is an N2 - N dimensional linear subspace.

To solve for = given U it is necessary only to solve for A and ng
j=1,...,N. The ni j # k are then given by reversing the definition

of » in (2-10) as

LI P . ;
T uj/Ak ik (2-23)
which is smooth since Aﬂ # 0. Solving for Aﬂ j # k is straightforward

since by the definition of U in (2-22)

Jpuk = J ‘

where Ut # 0 since nt and AE are non-zero. To solve for n% using A and

1 that = factors as

U observe from (2-23) and 13

j= . I 5=k
x = 8d sﬂ S o d) = I (2-23)
- -1/ay 0tk

Since ng # 0 d is non-singular, n"l =d "8 " and

(rhk = /ed)eh (2-26)
Substitute this expression into (2-22) the definition of Ug to find

J 2 Jy,J Jy.-1y3, 42

Uy = sgn (x3xy/L01/73) (8 7) 25] (2-27)

and since xg = 1 (2-27).solves as (2-28)
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J = J f J =1 L
Ty = sgn (Uj) Uj ‘(B ) A l (2-28)

which is smooth since it can never vanish.

The preceding discussion can be summarized as

Proposition (2-3): In almost all games the set of steady states which

are not FOPE are a set of isolated points.

Il1lustration of the Generic Case: Propositions (2-2) and (2-3)

characterize the generic game. The FOPE form an N - 1 dimensional set
which are all steady states except for an N - é dimensional subset. In
addition there may be isolated steady states which are not FOPE.

The generic 2-agent game is i]1ustréted in payoff space in figure
(2-1). The shaded areas are all feasible payoff combinations in the
game. Because the game is defined on an open set part of the boundary,
labelled IF, may not be feasible. The remainder of the bouﬁdary are
FOPE. Points along PE are pareto efficient. Points along PI do not
pareto dominate any outcomes. Points along PX maximize ﬂz-uﬂl
for some u > 0. In addition to the boundary there may be interior FOPE

along PZ which are saddle points of ulnl 2

+ uzﬂ for
some u # 0.

Except for the isolated points labelled "0" all of the FOPE are
steady states. The remaining steady states are the isolated
non-autonomous steady states labelled "*". As shown the FOPE and

steady states "almost" coincide.



Figure(2-1): The Generic Case
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3. Stability

The previous section showed that pareta efficient points ﬁre-a
subset of the set of steadyegtates. This section examines the extent
to which the stable steady states coincide with the pareto efficient
points.

The stability conditions in the general case are intractible and no

satisfactory relationship between stability and efficiency is
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developed. The first half of the section limits attention to symmetric.

games with symmetric initial conditions. In these games steady states
are stable if and only if they are (locally) pareto efficient. The
second half of the section gives a sufficient condition for strong
quasi-stability with non-unique steady states. As an application it is

shown that symmetric pareto efficient outcomes in two firm games are

strong quasi-stable even when non-symmetric perturbations are permitted.

Symmetric Games: In a symmetric game all firms are identical including

in the initial conditions. Such games are easy to study since the game
is characterized by two variables: the common output and the common
reaction. First the steady state conditions are restated in terms of
these variables. An examination of the stability conditions then shows
that (local) pareto efficient points and stable stéady states coincide.
Let xj = z and Rg =y j#k for each firm. In a symmetric game
all firms are identical and these variables complete describe the
game. - The motion of z is given bytheequations describing the motion of

the X (1-1 ) and (1-6) as



m=1 p=1
. J \PLIP
= Rm + 1](:5: nRY + ﬂj]
73 7
(-1 e (- D+ ) (3-1)

The motion of r is given by the equation of motion for Rﬂ j#Fk(1-7)

as
C i = S R+ el K]
r= Ry = boy Dnjl H° 7y Red + 73y
p=l
N . N
_ k J 5P J J P
= bn [wJ{ Z L Rk) o7y ( ™ Rj)]
p:l p:l
= bn [wi(ngr + ﬂi + ni (N - 2)r)
+ ngtvg + (N - 1r )] (3-2)

" . where the motion yk is from (1- 6) and n is the common value of the ni.

Equating (3-1) and (3-2) to zero end solving for z and r shows that

there are three types of steady states

_ j .
r = 1 ﬂj + (N - 1) ﬂk = 0 (3'3)
PeeUN-1) WA =0 R

_ i_ 3 |
re= ‘1](“ = 1) (N - 1) Wj' ﬂk -0 (3'5)



The steady state in (3-3) is autonomous and an extreme point of the
weighted sum ﬁ% nj. The steady itate in (3-4) is also autonomous and
is an extreme %Z%nt of the weighted sum nj - nk j # k. It cannot

be pareto efficient, since the weights do not all have the same sign.
The steady state in (3-5) is not autonomous.

Necessary conditions for stability are
az/az + a;/ar <0 (3-6)
(az/az)(ar/or) - (a;/ar)(a;/az) >0 (3-7)

sufficient conditions are that (3-6) and (3-7) hold with strict
inequality. Do the inefficient steady states in (3-4) and (3-5)
satisfy the necessary conditions? Differentiating the expressions for

z and r in (3-1) and (3-2) shows that
| ai/az = ((N - 1)r +1) .

(0 - 1 (e + e+ 0 - 2d ey s - 1ad))) (3-8)

. - . 2 S G4
ar/ar = bp [ni ﬁg + (ui) (N - 2) + -rrg 1r‘|]( (N - 1))

bn my(N 7] + (N - 2) ) ‘ (3-9)

when r = -1/(N - 1) as in (3-4) or (3-5) we see from (3-8) that ai/az B
and for stability from (3-6) it must be that ar/ar < 0. In (3-7)

wg = ai and from (3-9)
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ar/ar = ba(x)? 2(N - 1) > 0 “ | (3-10)

implying instability. In (3-5) ng = #3/(N - 1) and from (3-9)

ar/ar = bn{nk) (N/(N -1) + N =2)>0 (3-11)

implying instability as well.

The steady state in (3-3) must be broken into two cases. Define

= azﬂ‘j/BZZ

(%]
I

n

Ao - s - DG el s 0-2 D (3-12)

A necessary condition for pareto efficiency is that each firm's profit

be maximized subJect to the symmetry constraint. The first order

condition for this maximum is the condition in (3-3) nJ + (N - l)wk = 0.

J
The second order necessary condition is S < 0. In Appendix (C) it is

shown that in regular games S < 0 together with the first order
condition are also sufficient for a symmetric outcome to be locally

pareto efficient.

Examination of (3-3) shows r = 1 and combining this with (3-8) shows

2z/3z = NS (3-13)

while =%

g = - (N - 1)x) combined with (3-9) shows

b ()% (N = 2) = NN = 1)

ar/ar

b2 - P 1] < 0 o (3-14)
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So if S < 0 (3-6) holds. To determine when the other half of the

sufficient condition (3-7) holds cogpute from (3-1), (3-2) and (3-3)

s2/or = (N - (0= Ve + a3 + NN = D)
= NN -1)e) | (3-15)
31:'/32 = bn[(wj: + 1{)5]

5 bl = 2)ﬂﬂ 5 (3-16)

Using (3;13], (3-14), (3-15) and (3-16) to compute the expression in
(3-7) yields

(a;/az)(a;/ar) - (aé/ar)(a}/az)
= = ba(r))? SINCIN - 1)% + 17 - N(N - 1)(N - 2)]
= - bn K207 - (3-17)

If S <0 the sufficient condition is satisfied and if S > 0 the
necessary condition fails. Except for the unimportant case S = 0 a

steady state is stable if and only if it is locally pareto efficient.

Strong Quasi-Stability: When steady states are not isolated it is

possible to make arbitrarily small movements away from a steady state
to another steady state. Stability is impossible. A weaker condition
which I call strong quasi-stability requires only that a small movement

away from a steady state leads to a nearby steady state. For
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autonomous steady states which are N - 1 dimensional this is the
relevant stability concept.
&

Define the stability matrix

A= ax/ax a;faR ! (3-18)
aﬁ/ax aé/aR

A necessary condition for strong quasi-stability is that the real parts
of the eigenvalues of A be non-positive. If steady states form an
)f- 1 d?hensional manifold N - 1 of the N2 eigenvalues of A must
vépish, the corresponding eigenvectors indicating directions on the
steady state manifold. In Levine [11] section (3) it is shown that if
(x*, R*) is a steady state at which N2 - N + 1 of the eigenvalues
of A have strictly negative real parts and if there is an open set
surrounding (%*, R*) in which the set of steady states are an N - 1
dimensional manifold then (x*, R*) and all nearly steady states are
strong quasi-stable.
The previous section showed that the points x* which are

supportable as steady states are usually N - 1 dimensional. This does
not tell, however, the dimensionality of steady states in (x, R)
space. Appendix (D) shows that if the matrix a(x*) defined in (2-10) by
gt i (2-10)

k ,-":]j/“i]( j#k

does not admit a non-zero vector with non-negative components in its

null space, and in addition for all k [ | a ] has full rank, then there
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is a unique R* such that (x*, R¥) is a steady state and a neighborhood
of ‘this steady state in which steady states form an N - 1 dimensional
manifold. N

This discussion yields the following conclusion concerning

quasi-stability.

Proposition (3-1): if (x*, R¥) is an autonomous steady state and
o  [n(x*)| xJ has full rank for all k
o Ax*u=0= u}o0
o - A(x*, R*) has Nz - N + 1 eigenvalues with strictly
negative real parts
then there is an open set U 2 (x*, R¥) in which all steady states
0 form an N - 1 dimensional manifold

0 are strongly quasi-stable.

Two Firm Symmetric Games: Symmetric pareto efficient points in

symmetric games are stable with respect to symmetric shocks. As an
application of Proposition (3-1) it is demonstrated here that in two
firm games symmetric pareto efficient points are strong quasi-stable;
that is with respect to asymmetric as well as symmetric shocks.

The first order condition for symmetric pareto efficiency was given

in (3-3) as
f} £ (N -1) nﬂ =0 ' (3-3)
S (3-19)
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where (3-19) follows from N = 2. The matrix = is

e [0 % 1 * (3-20)
ﬂi -nﬂ
! B

which has rank one since wk 40 and is regular singular since it admits
e = (1,1)' in its null space.

The matrix » is computed from (2-10)

1 j=k

= 5 @ (3-21)
'F"?j/ﬁi]( | j#k

=

. 1 1 .
A = (3-22)

1 1
From inspection of (3-20) and (3-22) these matrices satisfy the
hypotheses of proposition (3-1). To apply the proposition requires_in
addition that three eigenvalues of A have strictly negative real parts.

In the two firm case the dynamic equations for agent one from (1-1)

(1-6) and (1-7) are

= fad + e+ Ry(eh + Ryr)] (3-23)
: 2
&L = baled (lRE+ np) + wylog + 71Rp)] (3-24)

Differentiating these equations, using symmetry and the equilibrium

conditions in (3-19) shows that

1 2

- J
Bx /3R2 = [sz + Rz '!‘[1 + RZ T[l:l b'iT
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‘1, 2 ]
BX/aRl_ﬂk
4. -
; 1 .
aRé/aR2 = —_bn (ni)z
‘1.2
aRzlaRl =0 (3-25)
By symmetry the stability matrix A defined in (3-18) is
A= |axt/axt ax L/ ax’ ﬁﬂ }ﬂ |
axlfaxz axlfaxl wﬂ ni
BR%/BXI aR%/ax2 - bn(ui)z 0
LaRé/axz aR%/ax1 0 ' . bn(nﬂ)z (3-26)

Let e, = (0, 6,-1, -1)’ ; then Re, = -bn(na)zeo 0 e, is an eigenvector
corresponding to a negative eigenvalue. Furthermore there are two
other eigenvalues corresponding to symmetric departures from
equilibrium and by the analysis of symmetric shocks these are strictly
negative as well.

Proposition (3-1) now applies and the efficient steady state and

nearby steady states are strong quasi-stable.
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4. The Very Long Run

" The system we have been studying was derived by approximating the
true equation for y (1- 5) by (1- 6). Thus the true system is a
(small) perturbation of the system we have studied. How does this
perturbation affect our results? A good reference for the discussion
that follows is Hirsch and Smale [8] chapter 16. |

The first point is that a small perturbation can't have steady
states far distant from the steady states of the unperturbed system.
This means that the perturbed steady states are (approximately) é
subset of the steady states we have studied. In effect, a perturbation
can destroy steady states and it can introduce new steady states but
the new ones must be close to the old ones.

A steady state is hyperbolic i ff none of the real parts of the
eigenvalues of the stability matrix vanish there. In a ne%ghborhood of
a hyperbolic steady state a perturbation creates no new steady states,
it shifts the hyperbolic steady state only a small distance, and it
preserves the stability properties of the hyperbolic steady state. In
the symmetric case the perturbation is symmetric and the steady states
are hyperbolic (generically) with respect to symmetric states. Thus
small perturbations have no important effect on the results given in
tﬁe symmetric case. Similarly, exceptional steady states are
generically hyperbolic and thus won't be affected much by small
perturbations.

The situation near the manifold of autonomous steady states is very

different. Generically, perturbations of a dynamical system have
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locally isolated steady states. It is to bé‘expected that when the
system is perturbed the steady state manifold will be replaced by a set
of isolated steady states lying near the manifold.

This deserves a bit of explanation. Figure (4-1) illustrates what
the s}stem might look like before and after a perturbation. Initially
the ; = 0 and é = 0 curves coincide constituting a manifold of steady
states. When (1- 6) is replaced by (1- 5) the ; = 0 curve shifts
slightly by an amount proportional to b. Only the steady state
(x*, R*) remains.

What happens along the old steady state manifold? Suppose the old
manifold was stronge quasi-stable so both ; = 0 and é = (0 are
attractors. Initially R doesn't move, while x moves towards the new
x = b curve. As x approaches ; =0 R is no longer in equilibrium and
begins to move along the old steady state manifold as illustrated in
Figure (4—2).

If the o]d,sieady state manifold is unstable the situation is quite
di fferent: a small perturbation of the system will typically cause the
system to move away from the old manifold entirely.

In the strong quasi-stable case, how rapid is the drift along the
steady state manifold? From (1- 5) and (1-7) ; = bF(x, R) and
R = b2 G(x, R) where remember b is small. As the system moves along
the old manifold x is approximately in equilibrium at x = 0 since it
equilibrates faster than é. This means, since x = 0 and R = 0 lie
apart by order b, thatthedistance of the system from R =0 is ax =

3

bH(R). Thus, R = bZGx ax = b Gy H(R) where G, are the derivatives of G

with respect to Xx.



R* seBaE b AT AR SRR

(2)

Figure(4-1): Perturbation of the Steady State Manifold
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Figure(4-2): Drift Along the Unperturbed Steady State Manifold
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In the short run x equilibrates most rapidly at rate 0(b) so
R is determined by initial conditions and x by i = 0. In the long run
R equilibrates at rate O(bz) causing the system to move towards the
unperturbed manifold of steady states. In the very long run, however,
the perturbation causes the system to drift along the unperturbed
steady state manifold at rate 0(b3). This is similar to the notion
of fast and slow manifolds introduced by Zeeman [13] chapter 3.

The exact nature of very long run steady states where output shares

are determinate is an interesting question for future research.



5. Conclusion

When firms can engage in costless retaliatory policies we
anticipate that they will reward dpponents who make pareto improving
output adjustments and punish those who selfishly try to increase
output. This paper has shown that, subject to technical
qualifications, this is true. The important qualifications:

0 In asymmetric games pareto efficient outcomes may be unstable
steady states. A small subset of the pareto efficient outcomes may not
be steady states at all.

0 In asymmetric games there may be stable steady states which
satisfy the first order conditions for pareto efficiency, but not the
second order conditions. A small number of steady states may not even

satisfy the first order conditions.
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APPENDIX (A)--Singularity and Regular Singutarity

Q.-
The objective is to prove two lemmas:

Lemma (A-1): m x n matrices of rank r are a set of codimension (m - r)

X (n-r).

Lemma (A-2): regular singular n x n mtrices are a set of codimension

48

Proof of (A-1): From McCoy [14] section 15.5 a matrix A of rank r has

an r x r non-singular submatrix Aqq. Assume

r n-r
A= | Ay A P (A-1)
Aoy A2 m-r

-

Any matrix of rank r is obtained from a matrix of the form (A-1) by
permuting rows and columns. Since only a finite set of such
permutations is possible it suffices to prove the lemma for a matrix of
the form (A-1). Following Guilleman and Pollack [6] chapter 1.4

problem 13 define

) -1
0 1

Since B is nonsingular rank (AB) = rank (A). Also
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AB = __1
Aoy Arp = AP A2
so that A has rank r if and only if

) 1 . | .
F(A) = Ay = Ay Ay A2 = 0 (A-4)

Since 3F/3A22 = [ the transformation F has full rank. Thus since F(A)

is (m - r) x (n - r) the lemma follows. Q.E.D.

Proof of (A-2): Let A be square, singular and non-regular. Any such

matrix can be obtained from a mtrix that admits a vector of the form
(0, Xp, ..., Xp)' in its null space by a finite permutation of columns,
so assume A has this form. Set

where a;; is an n-vector. Then A has the required form if and only if
Aip has rank (n - 2) or less. By the same reasoning used in lemma

(A-1) this implies a codimension of 2. Q.E.D.
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APPENDIX (B)--Genericity in Regular Games

A )

. . 2
Let G be the set of C2 mappings 7 - |RN in the Whitney C
topology where X is open ianN. Let GR be the subset of =" ¢ G which
also satisfy ni{x) <0 j#kand det (m(x)) # 0. The objective is to

prove
Lemma (B-1): D residual in G implies D dense in o

From general topological considerations it suffices to prove that

R closure (interior GR)). Define Gl to be the subset of G which
satisfies ni(x) <0 j#k.and G2 the subset which satisfies

det (n(x)) # 0. Obviously small perturbations of = satisfying

M (x) < 0 will satisfy the restriction so G1 is 6pen. Thus it suffices
to show Gzc: closure (interior Gz)). Define G3 to be the subset of G2
such that for ='¢ 6> there is an xq and xp with det (w(x;)) > 0 and

det (n(xz)) < 0. Obviously 63 is open. To prove lemma (B-1) it is
then necessary to only show that

ZC: closure (G3)

Lemma (B-2): G

This requires a preliminary lemma.

Lemma (B-3): If A is singular there is a matrix B such that for

A >0 det (A+ aB) > 0.



Proof:

By the Jordan decomposition theorem A = C’lJC where J is upper

triangular, has zeroces in the first (N - r) diagonal positions and the

non-zero eigenvalues of A in the remaining r diagonal positions.

Assuﬁé without loss of generality that the product of the non-zero

eigenvalues of A is positive. Let D be a diagonal matrix with ones in

the first r positions, zeroes in the other (N - r). Then for x>0

det (J + AD) > 0. Thus B = C'IDC satisfies the required property.
Q.E.D.

Now suppose = ¢ 62 - GB. Ignoring the case det (=)

vanishes identically (left as an exercise) suppose without loss of

generality for some X det(n(xl)) < 0. By assumption for some Xp

det (n{xz)) = 0. Let B be a ball centered on X;. Because % is open in

RN we may assume B9 and X1 f.c1osure (B). Let «* be (by lemma B-3))

such that det (n(xz) + xr*) > 0 for » > 0. Using techniques similar to

those of chaptér'z section 2 of Hirsch [7] there is a function

=Y G RV which is €™, vanishes outside closure (B) and has

DE'(xz) = g%, Then (" + 1 1") ¢ G3 for A > 0 and approximates =*

arbitrarily well. This proves lemma (B-2) and thus (B-1).
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APPENDIX (C)--Symmetric Efficiency

The objective is to show that in a symmetric game with ni‘: 0j#Kk
“g + (N - 1) wi =0and S<O0 {mp1y local efficiency. It was already
shown that this implies no small symmetric perturbation makes any firm
better off. SUPPOSE T has rows o) S always. I will show that if z
is an asymmetric N-vector then mz < 0 for some k thus implying any
non-symmetric perturbation makes at least one firm worse off via the
mean value theorem.

Lemma (C-1): If z is non-symmetric for some k mez < 0.

Proof: Suppose conversely z is asymmetric and 7z > 0. Since ni 70
j # k a check shows that = has rank N - 1. -Since 7e = 0 where e is
symmetric (by assumption) it cannot be that =z = 0. Thus we may
assume 7z > C where C; = 1 C=0 k > 1. By a theorem on linear
inequalities found for example as theorem 2.7 in Gale [3] the system
nz > C has a solution if and only if the system y'r =0 y'C=1has
no non-negative solution. Letting e = (1, ..., 1)' we see that

e's =0 and e'C = 1. Thus nz > C has no solution, a contradiction.

Q.E.D.
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APPENDIX (D)--The Manifold of Autonomous Steady States

cu
The objective is to prove that when the hypotheses of proposition
(3-1) are satisfied at (x*, R*) there is an open set |J2(x*, R¥) in
which steady states forma manifold of dimension (N - 1). This is done

by means of four lemmas.

Lemma (D-1): If a(x*) does not admit a weak positive null vector then
there is an open UDx* such that x e U and (x, R) a steady state

implies ;t(x) is singular.

Proof: Since ia(x) is continuous choose U so that x e U implies a(x) has

no weak positive null vector. If #(x) is non-singular the steady state
N :
is exceptional and from (2-20) satisfies E: Aﬂ /[(n'l}k Ak]z =0

k=1
contradicting the fact x doesn't admit weak positive null vectors.

Q.E.D.
Lemma (D-2): If [=(x*) lAk(x*}] has full rank for all k then there is

open UD x* such that x e U and =(x) singular imply (x, R) can't be a

non-autonomous steady state.

Proof: Since n(x) and a(x) are continuous choose U so that x ¢« U

implies [n(x) | A (x)] has full rank for all k. From (2-14) a necessary

condition for (x, R) to be a steady state is



v | =2 = 0 all k B . (D-1)
k I|
y .

Since = is singular and [= |3 ] has full rank the only solution to (D-1)
is wR, = 0 and W = 0. Thus a1 y¥ = 0 and if (x, R) is a steady

state it is an autonomous one. : Q<D

Corollary D-3: If (x*, R*) are as in proposition (3-1) there is

U 2 (x*, R*) in which all steady states are autonomous.

Now define wﬂ = nJRk. From (1-1 ) and (1- 7) the equations of

motion are

. N .

J j k
F.s 7 R
k=1

o ndop koL ok '
Rk bnk ['ﬂjwk“b ﬂjwk] J - (D""Z)
Let v§k= (wi, v g nﬂ_l, nﬂ+1, - nﬂ). The derivative of wi with

respect to all the state variables is the row vector

) _ J ' J
o = L0 RO T 0 | L |l | ..o | o (p-3)
1 k
where Dnj is the matrix of second derivatives of wJ. Observe that
R: = y/yk so that this can be written as

DWJI; = [-{Dnjy)'/yk ‘ 0 l... ﬂ'jk l ‘0] (D-4)
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The matrix Dw is formed by stacking the Dwi.
Lemma (D-4): If U contains only autonomous steady states and at steady
states corank (Dw) < (N-1) then autonomous steady states are a manifold

in U.

Proof: Since v is continuous by choosing U small enough we may assume

whenever n is singular the first row (say) is a linear combination of

the other rows. Since all steady state in U are autonomous w = 0 is

necessary and sufficient for a steady state there. Define w to be the
sub-matrix of w formed by deleting the (N-1) rows corresponding to
WD, W s wl. 1 claim that ¥ = 0 implies w =0 in U and DW has full
rank, which will prove the lemma. |

Suppose W = 0. Then wi, w%, ceny w? = 0 which reads =Ry = 0.
Since R% = 1 this implies = is singular. Does wt =0 ?
This reads ='Ry = 0. But “ij =0 for j # k and nl is a linear
combination of the nj. Thus 'R, = 0. SO W = 0.

Since corank (Dw) < (N-1) to show Dw has full rank it suffices to

show that Dwé is a linear combination of the rows of Dw. Observe from

(D-4) that

m m _ m m _
YkDWk = Ylle = ["Yl‘l'l'_ll 0 I.-. lYk“_k 'U] (D 5)
Thus

B I SRRy I B ER B2 . (0-6)

k
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Suppose ul = 5% p1n1. Then from (D-5) and (D-6)
i=2 e
- Ly S (D - ey (0-7)
Dw, = (l/wk)[wlle + z {YkD“'f'k - 10wy du; ]
i=2
Q.E.D.

is the desired Tinear combination.

Lemma (D-5): At an autonomous steady state if the stability matrix has

corank (A) < (N-1) then corank (Dw) 5_(N-1).

Proof: From (D-2) the equations of motion can be written as

v = Lw _ (D-8)

¢

where v is the vector of state variables and L is an Nszz
matrix. Since w = 0 at the autonomous steady state A = LDw. Thus

corank (A) < (N-1) implies corank (Dw) < (N-1). Q.E.D.

The proof of proposition (3-1) now follows from the fact that

corollary (D-3) and lemma (D-5) imply the hypothesis of lemma (D-4).
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