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Abstract

Largesse design asks what happens when players in a game, who have a limited will-
ingness to sacrifice for the common good, can coordinate on a welfare optimal solution.
This theory provides an alternative to psychological theories in explaining why play-
ers engage in costly punishments and rewards. It also says that players will engage
in other low cost methods of encouraging pro-social behavior, for example, through
reputation effects. In this paper, I study the properties and comparative statics of the
largesse design problem. Despite a lack of concavity in the maximization problem,
solutions are unique and continuous except on a lower dimensional bifurcation set. In
examples, I study these bifurcations, in which a small change in the parameters can

lead to a large changes in behavior or welfare.
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1. Introduction

Largesse design asks what happens in a game in which three assumptions are
satisfied. First, some players are willing to sacrifice a limited amount of utility, their
largesse, for the common good. Second, they agree on a common goal, social welfare
measured ex ante, before their roles are determined. Third, they are good at solving
coordination problems. Hence, largesse design asks what is the maximum welfare
achievable, and how should players play to achieve that welfare, given that for each
person there is an incentive constraint that they cannot sacrifice more utility than
they are willing to. Harsanyi (1982) called this rule utilitarianism, and in the voting
literature, Feddersen and Sandroni (2006) refer to it as the ethical voters model.

Largesse design problems have been studied by Feddersen and Sandroni (2006),
in the context of voting, by Dutta, Levine and Modica (2021), in the context of
public goods, and computationally by Levine (2025). In the voting literature the
interaction between groups, each of which solves a largesse design problem, has been
studied by Coate and Conlin (2004), Herrera, Morelli and Nunnari (2016), and by
Levine and Mattozzi (2020). Comparative statics, the mapping from parameters to
solutions, has not been extensively studied, and is the focus of this paper.

The largesse design problem is difficult, because the constraint set need not be
convex, and the objective function need not be concave. Never-the-less all are defined
by polynomials, so the relevant sets and mappings are semi-algebraic. In particular,
I show that, except on a lower dimensional bifurcation set, the map from parameters
to solutions is single valued and continuous. The bifurcation set is of particular
importance, as bifurcations have been seen to occur in the laboratory. For example,
in the centipede game, increasing the stakes, or changing the payoffs in the final
round, generally causes the number of rounds before players grab to switch from
relatively high to relatively low.? Outside the laboratory, bifurcations (or threshold
effects, which are the same thing) have been used to explain phenomena such as mass
protests and bank runs.

In addition to the generic single valuedness and continuity of the solution corre-
spondence, I establish other general results about the largesse design problem. Two
of these are straightforward, but useful. First, is establishing the utility transforms

under which the feasible set, and those under which the solution set, remain un-

2See McKelvey and Palfrey (1992), Maniadis (2011), and Cox and James (2015).



changed. Second, is demonstrating the monotonicity of the feasible set and of welfare
as largesse is increased. Finally, if each player has a distribution of largesse, I show
that that replacing each type with a single type having the average largesse can only
increase welfare. I then give conditions under which welfare and aggregate play re-
main unchanged, as the largesse distribution is altered. In particular if a player is
playing a best response with positive probability, then there is a range of largesse
distributions which do not change the solution.

I study several applications. I am particularly interested in games involving pun-
ishments (similar to ultimatum bargaining and public goods) and rewards (similar to
trust and gift exchange). These are games which have been used in the laboratory
to show that people are not entirely self-interested. These laboratory studies have
been used as the basis for various psychological theories of preferences for fairness and
reciprocity, such as Fehr and Schmidt (1999), Bolton and Ockenfels (2000), Falk and
Fischbacher (2006), and others. I show that largesse design provides an alternative
explanation: that players strategically engage in punishments and rewards to provide
incentives for pro-social behavior.

Largesse design theory is about deploying largesse strategically. As a motivating
example, I consider a simple punisher’s dilemma game, in which a second player can
strategically punish a first player, for anti-social behavior. This game is designed to
highlight the differences with existing theories. Selfish players, altruistic players, and
Fehr and Schmidt (1999) fairness players never punish. In the solution to the largesse
design problem, when largesse is low, the second player does not punish, and the first
player engages in a low level of pro-social behavior, much as a mildly altruistic player
would. As largesse increases, there is a bifurcation, and it becomes optimal for the
second player to begin punishing the first player for anti-social behavior. This leads
to a rapid increase in welfare as largesse increases. After the punishment is enough to
induce the first player to act pro-socially with probability one, as largesse increases
further, additional, smaller, gains take place as the second player reduces the socially
costly punishments.

The second application is a family of reward games, similar to the trust game.
These I study in greater detail. Unlike the punishment game, here there is no bi-
furcation, but rather as largesse increases, increased largesse by the receiver enables
them to provide a higher rate of return, leading the sender to invest more. The third

application considers a symmetric public goods game in which there are three choices:



to free ride, to contribute to the public good, or to contribute to the public good and
punish free-riders. As in the case in the simple punisher’s dilemma, there is a bifur-
cation. With three actions it is more dramatic. A small increase in largesse not only
changes behavior from free riding to punishing, but welfare jumps up discontinuously
when this occurs.

The final application looks at an alternative way in which largesse can be used
strategically to encourage players to behave pro-socially. Largesse design is a theory
of commitment with an ex ante constraint on the amount that players are willing
to lose. Reputation theory is based on the existence of at least a small number of
committed players. I show how, in largesse design, the endogenous commitment of a
few players, with relatively small largesse, can be bootstrapped to give good welfare

results in a game between a long-run player and a sequence of short-run opponents.

2. Literature Review

Before proceeding, I would like to convince you that the theory is relevant. I hope
I do not have to convince you that some people are willing to make limited sacrifices
for the common good.

With respect to social welfare as a criterion, I am going to observe that in lab-
oratory studies (see in particular the review by Fehr and Charness (2024)) people
care about both efficiency and fairness. With risk averse individuals, social welfare
is a parsimonious model of people who care about both. Greater efficiency raises
welfare, and, with risk aversion, greater fairness corresponds to better insurance, and
also raises welfare. T am not going to argue that people necessarily agree that ex
ante social welfare is the right goal. Rather, I am going to propose it is a reasonable
criterion, and I am going to ask what happens they do. To this I will add that in
Levine (2025) I show that it works well in explaining laboratory behavior.

I feel T do need to convince you that people are good at solving coordination
problems, both inside and outside the laboratory. This is in light of the fact that, in
the experimental lab, beginning with Van Huyck, Battalio and Beil (1990)’s study
of the minimum game, coordination failures have been documented, and indeed there
are a variety of theories, risk dominance and global games most prominently, that
aim to predict when coordination failure will occur.

I am going to propose that these failures of coordination are not due to the inability

of people to coordinate, but rather that, in the laboratory, as well as outside, the



environment is noisy. Let me start with the Van Huyck, Battalio and Beil (1990)
minimum game, with 15 or more players, in which it is observed that experienced
players, rather than coordinating on the welfare optimal highest level of effort, instead
only manage the least level of effort. My observation is this: with 15 or more players,
in a game where only the minimum level of contribution to a public good matters,
then if players tremble, it is highly likely that one will ruin things for everybody.

Specifically, (see Levine (2025)) if 1/3 of the players tremble uniformly then, in
fact, the only equilibrium is for all non-trembling players to provide the least effort.
Hence, in the relevant normal form, the one with trembling, they in fact coordinate
on the welfare optimal equilibrium, as there is only one equilibrium. Now 1/3 of the
players trembling uniformly may seem like a lot: 29% of the time should they be
playing more than the least level of effort. In fact, in the Van Huyck, Battalio and
Beil (1990) data in the final of ten periods, and despite the fact that in the previous
six periods the minimum level of effort was the least possible, 29% are providing more
than the least level and, indeed, 10% are providing the highest level.

I turn next to two meta-studies. The first is a meta-study of 2 x 2 stag hunt
experiments by Dal Bo, Frechette and Kim (2021). These are strangers treatments
in which players played at least eight times. In this game, the welfare optimum is for
all to hunt stag, and the basin is defined as the greatest probability of hare that makes
it optimal for all to hunt stag. The second is a meta-study of indefinitely repeated
prisoner’s dilemma experiments by Levine (2024). These are strangers treatments in
which players played at least fifteen times. Here I follow the literature in defining the
basin with respect to the 2 x 2 game in which the strategies or grim-trigger and always
defect. I report welfare with utility normalized, as is standard in the literature, to
zero for mutual defection and one for mutual cooperation. This is the same as the
cooperation rate if play is perfectly correlated or if the off-diagonal welfare is 1/2 and
is highly correlated with the cooperation rate.

Below, in Figure 2.1, [ report the theory and the data for the different treatments.
On the horizontal axis is the basin of the treatment, on the vertical axis is the fraction
of time the players chose stag for the stag hunt games and the normalized welfare
for the indefinitely repeated prisoner’s dilemma games. The red correspondence is
the best equilibrium when players tremble uniformly 1/3rd of the time. The blue
correspondence is the predicted probability from both risk dominance and global

games, which are the same in this setting, and both of which predict the “good”



equilibrium of stag or grim-trigger if the basin is greater than 50%, and the bad

equilibrium of hare or “always defect” if the basin is less than 50%.
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Figure 2.1: Stag Hunt and Indefinitely Repeated Prisoner’s Dilemma Meta-studies

dots: data
blue: risk dominance/global games
red: best equilibrium with 1/3 probability of uniform tremble

left panel: stag hunt treatments, period 8

vertical axis: frequency of stag
right panel: indefinitely repeated prisoner’s dilemma treatments, all periods starting
in period 10

vertical axis: welfare with payoff to mutual defection normalized to zero and
mutual cooperation to one

I believe that these two graphs show that best equilibrium with trembling is a
viable alternative to risk dominance and global games for explaining what happens
in coordination games.

Beyond this, I have documented in Levine (2025) that a simple theory of 1/3
uniform trembling in a largesse design problem in which half the population is selfish,
and half have a largesse of roughly $1.00 over the course of play, does a good job in
predicting the play of experimental participants across a wide variety of experiments.

This built on earlier work by Dutta, Levine and Modica (2021), in which we examined



the largesse design problem both inside and outside the laboratory.

Outside the Laboratory

Outside the laboratory, two Nobel prizes have been awarded for documenting the
ability of people to coordinate on good equilibria: Coase (1960) and Ostrom (1990).
I would add to this also the work of Townsend (1994) on insurance in rural societies.
Indeed: the entire premise of contract theory is that people are pretty good at figuring
out good solutions to social dilemmas. Outside the laboratory, of course more time
is available and people can talk, but the problems tend to be more complex. The
success of market design as a commercial enterprise convinces me of two things. First,
people cannot necessarily solve hard problems, but they would like to.

In voting theory, the theory of ethical voters or rule utilitarianism, which give
rises the largesse design problem have been studied theoretically by Feddersen and
Sandroni (2006), and empirically by Coate and Conlin (2004). Subsequently the
model has been widely used by other authors, such as Herrera, Morelli and Nunnari
(2016).

As I indicated, the idea of largesse design is closely connected to the idea of rule
utilitarianism. This is an idea dating back to Mill (1861), and is described by Garner
and Rosen (1967) as “the rightness or wrongness of a particular action is a function

”? This is in contrast to act

of the correctness of the rule of which it is an instance.
utilitarianism, a more commonly used concept in economics. The difference between
the two ideas can be illustrated by the punishment of a free-rider in a public good
game. As an act this is unambiguously bad, as it lowers welfare. However, used
as a rule, it can be good, because it encourages people to contribute to the public
good. The idea that rule utilitarianism is an individualistic way to solve coordination
problems was studied in Harsanyi (1982).

Finally, the feasible set for the largesse design problem has a close connection
to the idea of e-equilibrium, introduced in Radner (1980). In largesse design each
type of each player can have a different value of € and it need not be small, but the

relaxation of the constraints through largesse is exactly that from e-equilibrium.

3. The Model

The setting is that of a normal form game. There are n players and each player

has a finite strategy space s* € S* with payoffs u’(s’, s7%). The space of pure strategy



profiles is denoted by S. If there are trembles, then strategies represent intentions,
and the normal form is the corresponding expected utility, that is, trembles are taken
to already be incorporated into the normal form of the game.

Each player has a finite type space T* with types denoted by 7. Denote the set
of all types by T = U, T". The fraction of type 7 is denoted by ¢, > 0 where
the fractions of types of a single player add up to one: for each ¢ it is the case that
> reri @ = 1. Each type is characterized by a non-negative largesse 7, > 0. Types
are private information.

Let 0! denote a mixed strategy for type 7 € T and let o be a vector of such
mixed strategies. Denote by X the corresponding set of profiles. Define the induced
mixture from all types of player i by @ = Y __;. ¢-0L . For a given vector o € ¥
of mixed strategies for each player and type let u’(c?,57) be the expected utility of
type 7 of player i. Given o each type 7 € T® of player i faces an incentive constraint
that the gain from deviating is no greater than -,

9-(0) = maxu'(s',7") —u'(07,7 ") < 7y
sieS
If this is satisfied for all players and types we say that o is incentive compatible. If
~v> = 0 for all 7, then incentive compatibility is the same as Nash equilibrium.

Expected per capita social welfare from o is given by

n

n
W(e)=>" > ¢ui(cl,5")/n=> u'(@)/n.
i=1 reTi i=1

The largesse design problem is to find the o that maximizes social welfare subject to
incentive compatibility. If v, = 0 for all 7 this is the same as choosing the welfare
optimal Nash equilibrium.

Several special cases are of particular interest. If there is only one type of each
player we say that largesse is unitary, and replace the redundant type subscript 7 in
v, with the player superscript, 7¢. If each player draws from the same distribution of

types we say that largesse is symmetric. A type with largesse v, = 0 is called selfish.

4. The Punisher’s Dilemma

The punisher’s dilemma is a 2 x 2 game. The first player, called the US, chooses
between (F)ighting and (C)onceding, and the second player, called the SU, chooses



between (S)tanding aside, and (P)unishing. Punishing involves building a doomsday
machine. Take first the case where the SU stands aside. If the US fights both get 4.
If the US concedes they get less, 3, but the SU gets more, 7. Conceding is welfare
superior, as it avoid the cost of fighting.

On the other hand, it costs 1 to build a doomsday machine. This machine will be
activated only if the US fights, in which case it will explode causing 2 units of damage
to the US (and none to the SU). This is summarized in the payoffs matrix in Table
4.1 below.

L [ s][P]
Fl4,4]23
C 13,7036

Table 4.1: Punisher’s Dilemma Game”

A key fact about this game is that a selfish, altruistic, or Fehr and Schmidt (1999)
fairness SU will never build a doomsday machine. For selfish SU, standing aside,
S strictly dominates building a doomsday machine. Moreover, it strictly dominates
from a welfare point of view as well, so an altruistic SU would never would also never
build a doomsday machine. For a Fehr and Schmidt (1999) fairness SU when the US
plays F' the choice S is strictly better from a fairness point of view. When the US
plays C' the gain in fairness to the US from the SU punishing is 1 and the cost to
the SU is 1 and Fehr and Schmidt (1999) assume that no player would make such a
trade-off.

Notice that when the SU is playing S neither the selfish nor Fehr and Schmidt
(1999) US would play C' so that the unique outcome is F'S.

In contrast to the other theories, largesse design predicts that doomsday machines
will sometimes be built. Specifically, I analyze the unitary symmetric case, in which
there is one type of each player, and both have the same largesse: v = ~% = 7.
Figure 4.1 below summarizes Proposition 4.1 below, characterizing the solution of

the largesse design problem.
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Figure 4.1: Punisher’s Dilemma Game

welfare measured as fraction of difference between F'S and C'S

solid line: welfare from solution of largesse design problem

dotted line: welfare from largesse of player 1 only (7% = 0)

red: 0%, the probability of P in the solution of largesse design problem

Denote by o} and 0% the probabilities of the (single types of) US conceding and
the SU of building a doomsday machine. The cost of building a doomsday machine is
1, so the incentive constraint for the SU is 0% < 7. For low levels of largesse, 7, the
cost from this low level of punishment is too great to justify the small improvement
in incentives for the US. Hence the optimum is to take 0% = 0 and rely solely on
the largesse of the US to get a low level of concession. When 7 = 1/4 this changes,
and there is a bifurcation, two equally good solutions, one with ¢% = 0 and one
with 0% = 7. Beyond this point it is better to use punishment, and ¢% jumps up.
As 7 rises so does 0% and welfare rises rapidly. Always, ol is chosen as large as is
feasible. At 7 = 1/3, this maximum feasible o}, reaches 1. After this 0% should be
reduced to avoid a costly and unnecessary punishment. Note that this “least possible
punishment” is characteristic of the largesse design problem.

Notice in particular the subtle behavior of o%. It is initially zero. At 5y = 1/4 it
jumps up, then rises linearly until 7 = 1/3, following which it declines linearly. T will

show later that this behavior - a solution that is unique and continuous except on a
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lower dimensional bifurcation set (here 7 = 1/4) - is typical of solutions of the largesse
design problem. Notice that in this case behavior, as measured by o bifurcates, but
welfare is continuous. I will refer to such a case as a behavioral bifurcation. As I will
show later, there can also be welfare bifurcations, in which welfare jumps.

To understand a bit better why doomsday machines are useful for the largesse
design problem, focus on the case in which 7 = 1/2. If no doomsday machine is built,
the US must satisfy 75 < 1/2 so the highest possible welfare is 1/2 of 8 and 1/2 of 10,
which is to say 9. By contrast, with 7 = 1/2 the SU could build a doomsday machine
with probability 0% = 1/2 which would make the US indifferent between fighting
and conceding. The welfare optimum is when they concede, in which case welfare is
50 —50 between C'S and C'P, which is to say 9.5, definitely better than the 9 that can
be obtained using solely US largesse. Notice, though, that when 7 = 1/2 the optimal
choice of 0% # 1/2. Because they have largesse, the US is willing to concede with
probability 1 even if it involves a loss. That is, their constraint is strictly satisfied.
Hence, 0% should be reduced until the US constraint is satisfied with equality, raising
welfare by reducing the cost of punishment.

These results are summarized in Proposition 4.1 below.

Proposition 4.1. There are five regions

i. ¥ < 1/4, the solution is unique, o5 =7, 0% = 0 and 2W = 8 + 2y

.y =1/4 , there are two solutions ot = 1/4, 0% =0 and o}, = 1/2, 0% = 1/4,
and both give welfare 2W = 8.5.

. 1/4 < 75 < 1/3, the solution is unique, ot = ¥/(1 — 27), 0% = 7 and
2W=8-37+2y(1+7) /(1 —279)

w. 1/3 <75 < 1, the solution is unique, o, = 1, 0% = (1 —75)/2 and 2W =
9.5+7%/2

v. 7 > 1, the solution is unique and first best, ot = 1, 0% =0 and 2W = 10

Proof. The objective function is
2W =8 —30p +20¢ (1 +07).

The incentive constraint for 2 is 0% < 7.
If in a solution C' is a best response, then ob > 1/2, and this implies 7 > 1/2.
It follows that ol = 1 since this certainly satisfies the incentive constraints, and

maximizes welfare. Welfare is then 2W = 10 — 0%, so it is desirable to decrease op.
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If o}, > 1/2 this cannot be optimal. Moreover, since 7 > 1/2 it is possible to lower
ol further without violating the incentive constraint for player 1.
It follows that F' is always a best response in any solution. Hence the incentive

constraint for player 1 is

ot (1—-20%) <7. (4.1)

If the incentive constraint for player 1 does not bind, welfare can be improved by
increasing o, since this does not affect the constraint for player 2. Hence either the
constraint binds or o}, = 1. If o, = 1 welfare can be improved by decreasing %, so
if the constraint does not bind, then o, = 1 and o% = 0. This is feasible if and only
if ¥ > 1 which is case (v).

Assume, then, that the incentive constraint for player 1 does bind. Solve it to find

g

— 4.2
1—20% (4.2)

=
if 02 < (1 —7)/2. In this case welfare is given by

1+ o2

2W =8 — 305 + 2y—— L.
L gy

It can be checked that the second derivative is positive, so the solution is to either

take 0% = 0 or as large as is feasible. The welfare difference between 0% = 7 and

0% =0 is then given by

I+7

—57 + 27 .
T

This has a root at 7 = 0 and at 7 = 1/4, and is negative in between. This gives case
(i) and half of case (ii).
For 7 > 1/4 and o}, < 1 it is then optimal to choose 0% as large as possible, that
is, 0% = 7. From 4.2 this gives
v
1—-2y

ol =

Observing that this equals 1 at 7 = 1/3 gives the rest of case (ii) and case (iii).
Once o, = 1 welfare is 21 = 10 — 0%,50 0% should be chosen as small as possible,

which, from 4.1 is 0% = (1 —7)/2. As this is equal to 0 at 7 = 1, that completes case

(iv). O
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5. Basic Theory

Existence of a solution is fundamental and fairly obvious. For completeness I state

and prove this.

Proposition 5.1. The incentive compatible set is compact and non-empty. A solution

to the largesse design problem exists and the set of solutions is compact.

Proof. The incentive compatible set is non-empty because it contains all Nash equilib-
ria, and is closed because it is defined by continuous functions and weak inequalities.
It is bounded because it lies in the simplex. The objective function is continuous.

Hence there is a maximum, and the argmax set is compact. O

Notice, however, that the constraint set, while closed, is not generally convex and
the objective function, while continuous, is not generally concave. Despite this, the
solution correspondence has strong properties.

Fix the set of players and the spaces of pure strategies S?. The largesse design
problem is parametrized by the utility vector, any point in R®%°, the type distribution,
any point in the cartesian product of type simplices ®, and the largesse vector, any
point in R%”. The parameter space is some Z C R#5 x R x .

For each z € Z let F/(z) C ¥ denote the feasible set, that is, the subset of 0 € ¥
where g(o) < 7, let F(z) denote the solutions to the largesse design problem, and let
W (z) be the corresponding welfare.

Proposition 5.2. The correspondence z = F(z) is upper-hemi continuous and com-

pact valued.

Proof. Tt is compact valued by Proposition 5.1, and upper-hemi continuous because

it is defined by weak inequalities and continuous functions. O
Corollary 5.3. If 2" — z then lim W (2") < W (z).
This says that welfare can jump up in the limit, but not down.

Proof. Let o™ € ﬁ(z”) be a convergent sub-sequence. By Proposition 5.2 ¢ = lim o™ €
F(z). Hence, since the objective function is continuous, lim W (2") = lim W (6", 2") =
W(a,z) < W(z).

U
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5.1. Generic Continuity

Upper-hemi continuity of the feasibility correspondence might seem like the end
of it: neither F'(z) nor W(z) is upper-hemi continuous. Indeed, take the unitary
symmetric case with v* = 42 = 0 and consider the “prisoner’s dilemma game” below
in Table 5.1 where B < 3.

| D | C |
D] 0,0 | B,—1
Cl-1,B| 1,1

Table 5.1: The “Prisoner’s Dilemma Game”

For B > 1 this is indeed a prisoner’s dilemma game, F(B) = F(B) = {DD},
W (B) = 0, and there is nothing more to be said. However, when B = 1 this is a
coordination game, F(B) = {DD,CC?}, and both F(B) and W(B) jump to CC and
1 respectively. When B < 1 the feasible set F'(B) has three points, {DD,CC} and
the mixed Nash equilibrium, while F(B) and W (B) remain unchanged. Notice that
in the unitary symmetric case, with 4! = 42 =75 > 0, the same jump occurs, albeit
at B—1=7.

In contrast to the example of section 4, in this bifurcation welfare jumps along
with behavior. As indicated, I refer to this as a welfare bifurcation. Notice that,
like the bifurcation in section 4, the bifurcation is “rare” in the sense that it occurs
only on a set of dimension 0, in this case the set B = 7 + 1. It turns out that the
property that bifurcations occur only on lower dimensional sets is true in general. To
understand why, it is important that the utility functions are not only continuous in
the parameters and mixed strategies, but are polynomials.

A set defined by polynomial equalities and (strict) inequalities, and the unions of
such sets are called semi-algebraic, and have strong properties.® Coste (2002) is a
good reference, and Blume and Zame (1994) provide a good summary. Chief among
these properties are that unions, intersections, complements, boundaries, interiors,
and closures of semi-algebraic sets are semi-algebraic. Semi-algebraic sets are a finite
union of connected real-analytic manifolds, and the dimension of a semi-algebraic set
is the largest dimension of such a manifold. The boundary of a semi-algebraic set has

lower dimension than the original set.

31 am grateful to Klaus Ritzberger for pointing this out to me.
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A correspondence with semi-algebraic graph is called semi-algebraic. The values
of a semi-algebraic correspondence are semi-algebraic sets. Semi-algebraic functions
satisfy a variation on the implicit function theorem and Sard’s theorem, called the
Hardt Triviality Theorem.

From this point forward, I am going to assume that the parameter space Z is
semi-algebraic. This implies that the constraint correspondence F' is semi-algebraic.
A detailed proof can be found in Blume and Zame (1994), who consider Nash equilib-
rium, but their proof applies if we replace 0 by ~* in their constraints. Besides Blume
and Zame (1994), a series of papers by Govindan and Wilson, for example, Govindan
and Wilson (2009), also use the semi-algebraic properties of incentive constraints to
prove results about refinements of Nash equilibrium, such as forward induction and
strategic stability.

Write W (o, z) to make transparent the dependence of welfare on the parameters.

In the current setting, consider that the solution correspondence can be written as

A

g€ F(z) <<

Vo' (W (o,2) > W(d',2)) N(W(o,2) =W(d',2)))V(c' € F(2)) V(0 € F(2))).

This set is not obviously semi-algebraic because it uses the quantifier Vo', but the
Tarski-Seidenberg Theorem asserts that this does not matter, that, in fact, a set
defined by polynomial equalities and inequalities, logical operations, and quantifiers,
is semi-algebraic, that is, can be defined by (a different set of) polynomial equalities

and inequalities without quantifiers. Hence the solution correspondences F(z), W (z)

are semi-algebraic.

Proposition 5.4. The correspondence z = (F(z), F(z),W(z)) is continuous (up-
per and lower) al every point of the complement of a (relatively) closed, lower-

dimensional, semi-algebraic subset of Z.

Proof. A lemma in Blume and Zame (1994), shows this to be true for any compact

valued semi-algebraic correspondence on a semi-algebraic domain. 0

5.2. Compressed Models

The basic idea of this subsection is that heterogeneity in largesse, that is, multiple

types and divergence from the unitary largesse model, only matters when largesse
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is large. If largesse is small then players “should” be playing best responses most
of the time, and if they do, the remaining small probability of playing something
better can be distributed among different types in proportion to their largesse. This
breaks down when players are not playing best responses most of the time, because
there may be too many players with small largesse who are unable to play non-best
responses frequently.

For any given model, we can define a unitary model, the compressed model, as the
model with a single type of each player with the average largesse 7' = > 1 ¢, If
o is incentive compatible in the original model then & is clearly incentive compatible
in the compressed model, so that W > W. If in fact W = W, I say that the
model compresses. In this case, if & solves the original problem, then & solves the
compressed problem, as it is feasible there and gives the maximum possible welfare.
In other words, the description of a player’s play aggregated across types is the same
for the original and compressed models.

As indicated, a model need not compress. Consider, for example, the two player
dictator game with risk aversion in which the first player must choose between keeping
an endowment giving a utility of (8,0) and splitting the endowment giving a utility
of (5,5). Here, as will be the case when both players are risk averse, the unequal split
provides less welfare than the equal split. Suppose that there are two equally likely
types of player 1 with largesse 0 and 6, that is, one type is selfish. Then 7 = 3, so that
the solution of the compressed problem is for player 1 to split the endowment with
probability 1. However, this is not feasible in the original problem, since the selfish
player will never split the endowment, and so there is only a fifty percent probability
of player 1 splitting the endowment. On the other hand, if the two types have largesse
0 and 3 then the solution of the compressed model with 7 = 1.5 is to split half the
time, and this is the same solution as the original model where the selfish players do
not split, and the remaining players always do

Which case is relevant? The case where the model fails to compress as in the
counter-example, or the case where it does compress as occurs with less largesse? Let
BR!(7) denote the set of best responses to ¢ by player i. The next result gives a

sufficient condition for a model to compress.

Proposition 5.5. Let @ be a solution of the compressed model. Let 4* = max,cpi Vr.
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If for each player i we have

= Y ) <A (5.1)

si¢ BR(7)
then 6i(s) = (v,/7)6 for s ¢ BR() and

o) = (1= (eME) T () 30 ()

s'€BR(7)

for s € BR(%) is a solution to the original problem and W (&) = W(G). That is,

when 5.1 holds, the model compresses.

What this says is that if the solution of the compressed problem has a sufficiently
high probability of playing a best response for each player, then it is also a “solution”
to the original problem. If the original problem was unitary, then the condition
in equation 5.1 is always satisfied. More generally, equation 5.1 can be viewed as
establishing the amount of heterogeneity in largesse that is consistent with an original
model that has the “same” solution as the unitary model.

As an example, consider the punisher’s dilemma game from section 4. In the
range 7 between 1/4 and 1/3 the largest probability of not playing a best response
is by player 1 and is o/, = 7/(1 — 27). Suppose there are two types, with the same
distribution for both players, a selfish type with largesse 0 and an ethical type 7 = E
with probability ¢ and largesse 7/¢ . Then from Proposition 5.5 the solution for the
compressed problem is valid for the two type problem provided 7/¢r < 7/(1 — 27).
In other words, ¢p > 1 — 27. This ranges from ¢p > 1/2 at 7 = 1/4 to ¢p > 2/3 at

5 =1/3.

Proof. Since W(6) < W(7) it suffices to prove that & is feasible in the original
problem.

First, observe that 6 = @. For s' ¢ BR'(7) we have gi(si) = e br (7, /7T (1) =
& (s)). For s' € BR(5) we have

TET? s'€BR(7)

The incentive constraints are always satisfied for o' € BR'(7) so in the original
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problem the incentive constraints are

S (et (e 705 0,7 ) <

) . \stest
s'¢BR(Z)

which are satisfied since the constraints are satisfied in the compressed model.
The crucial step is to check that 6 is actually a probability distribution, that is,
(7 /73" < 1. Then

(/T = (/7)Y T <G/ Y TS

si¢ BR(7) si¢ BR(7)
By the assumption, equation 5.1, this final expression is less than or equal to one. [

It is tempting to think that when = is small, a best response must be played with
high probability. Because of mixing this might not be the case, but when the solution
for v = 0 is unique and a strict Nash equilibrium, if we bound the ratios of the v,’s,

then, indeed, the model compresses.

Proposition 5.6. Suppose that Z8 are z such that ¥ /4* > B or v = 0. Suppose at
2 € ZP that 4 = 0 and that the solution to the largesse design problem is unique and
is a strict Nash equilibrium &. Then there is a neighborhood of 2 in Z® in which the

model compresses.

In particular if we fix the payoffs, the types distribution and 7, and consider
models Ay where )\ is a positive scalar constant, and the solution to the largesse
design problem is unique and a strict Nash equilibrium, then, for small enough A\, the

model compresses.

Proof. Consider
Y(z) = max sup Z 7 (s9).
' 6eF() sigBRIZ)

By Proposition 5.5 in Z? if ¥(z) < B the model compresses. Suppose that in every
neighborhood of 2 in ZP there is some 2" such that the model does not compress, so
that in particular 3(2") > B. We can choose a sequence o € F(z) so that 3 (2") —
MaX; Y igppiE 7 (s™) SA nB/Z Hence max; Y iy ppism 7 (s™) ZAB/2. Consider a
convergent sub-sequence ¢ — ¢. If 6 = 6 then max; Y iy ppisn) 0(s™) — 0 since &

is strict. This is a contradiction, so & # 4.
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Since the solution to the largesse design problem at Z is assumed to be unique,
we conclude that W(a) < W(s). However, 4 = 0, so ¢ is feasible for all z. Hence
W(@") > W(6), and by continuity of W this implies W (&) > W (6). This contradic-

tion concludes the proof. O

5.8. Utility Transformations
It is useful to know when we can transform payoffs without changing the solution

to the problem. Again, the next result is fairly obvious, but useful to have stated.

Proposition 5.7. Consider the largesse design problem transformed by A', 3" >
0,0 (s7) with transformed utility u'(s', s7%) = A"+ Biu'(s', s7") +v'(s™*) and largesse
Ar = Biv,. The incentive compatible set of the transformed problem is the same as
the original problem. If ' = (7 and v'(s™") = 0, then the set of solutions in the

transformed problem is that same as in the original problem.

Proof. The transformed incentive constraints are
A 4 Bui(0h,677) + By > Al + Bl (s',67)

which is equivalent to the original. When 8° = 37 and v'(s™%) = 0 the transformed

objective function is

DD A Buol,aT)) =Y ¢ A n+ W (o)

i=1 reT i=1 reT?
equivalent to the original. O

Note the importance of 3 = 3’ for the solutions to remain the same. Using
different multipliers for different players implicitly changes the utility weights on
different players, and results in a different social welfare function. Equivalently, this

is saying that utility for different players must be measured in compatible units.

5.4. Monotonicity
Another obvious, but useful, result is that increasing largesse can only increase

welfare.

Proposition 5.8. Fiz a normal form game and suppose that vy > ~. Then the welfare
W' from the solution of the v problem satisfies W' > W, where W is the welfare from
the solution of the ~ problem.
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Proof. The solution of the 4/ problem is feasible in the ~ problem. O]
Clearly, if largesse is large enough, the first best is attainable.

Proposition 5.9. Generically there is a unique first best profile, which is in pure
strategies. Denote the profile in which all types play the first best by 6. Then the
solution to the largesse design problem is first best if and only if v > g(5).

Proof. Generically each pure profile has a different level of welfare, so there is a
unique welfare maximizing pure strategy. This is welfare maximizing also over mixed
strategies, since mixed strategies induce a probability distribution over the entire
profile space. Clear then, the first best is attainable if and only if ¢ is incentive

compatible. O

5.5. Two Player Games

Proposition 5.10. In a two player game either a constraint binds or the outcome is
the first best.

Proof. If no constraint binds then the outcome must be an interior local welfare
maximum. Since the objective function is quadratic, an interior local maximum is a

global maximum. O

5.6. Uniqueness

Say that Z allows utility perturbations if for z = (u,v,¢) € Z there is an open
neighborhood O of u such that (O,v,¢) C Z. Let F' denote the projection of F' onto

the aggregate strategies @ derived from the type strategies o.

Theorem 5.11. Suppose that Z allows utility perturbations. Then f(z) s continuous
function (a singleton) at every point of the complement of a (relatively) closed, lower-

dimensional, semi-algebraic subset of Z.

This cannot be true in F. Consider the punisher’s dilemma game where 1 > 7 >
1/3. Suppose that there are two types with generic 7, close to 7. Since the constraint
for player 2 is slack, we are free to shift the burden of punishment slightly between
the two types without violating the incentive constraints. Perturbing payoffs, and so
forth, a small amount will not change this. In other words, the behavior of a player

is generically unique, but behavior of each type need not be.
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Proof. The idea of the proof is to prove that if there are multiple solutions in F(z) then
f(z) fails to be lower-hemi continuous. The result then follows from Proposition 5.4.
That proposition asserts that at every point of the complement of a (relatively) closed,
lower-dimensional, semi-algebraic subset of Z the correspondence Fis continuous,
hence so is the projection I3

To show that when there are multiple solutions in E(z) then E(z) fails to be lower-
hemi continuous, it suffices to show that a solution can be perturbed away. That is,
it suffices to exhibit a sequence z™ — 2, a 7 € E(z), and a closed (and therefore
compact) set H not containing & such that 7™ € E(zm) implies 7" € H.

For an aggregate mixed strategy @ it will be useful to let 7 (&) denote the prob-
ability distribution over outcomes induced by @. To carry out the construction, the
perturbations 2™ will perturb the payoffs of player i by u'(s) + N"v'(s™%), where
A" > 0 and A™ — 0. Hence, by Proposition 5.7 the feasible sets F(z™) = F(z)
are constant. Let z(s) = Y. v'(s7")/n. The perturbed objective function is then
w(7,2™) =w(a,z) + A"z - 7(7).

Suppose that f(z) has at least two points, & # &. Then for some player i and
§' € S' it must be that gi(éi) > &' (§%). For j # i take

and take vi(s~') = —(n — 1)5(§'). Then z-7(3) = ((n — 1)/n) (@(s") — 6(5")). In
particular, z - 7(6) = 0 and z - 7(6) < 0. The idea is to reward other players when
player i plays 5’ so as not to change incentive constraints, while making 5 more welfare
attractive than s.

For the space H take the @ such that z-7(&) > 0. Since 7 is continuous, this space
is closed. Suppose that o™ € f(zm) It must be that it arises from ¢ € F(2™) =

F(z), and since ¢™ maximizes w(a, 2™) in F(z) and ¢ € F(z)
w(@", z)+ A" -7w(@™) > w(d,z) + A"z - w(6)

=w(d,z) > w(@m, 2)

where the final inequality follows from ¢ € F(z) and 6 € F(z). Hence X"z -m(c™) >
0 and A" > 0 implies " € H. O
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Note that this result holds if payoffs and largesse are symmetric and only symmet-
ric equilibria are allowed. Here the perturbation must be chosen to preserve symmetry.
Rather than picking a player and a pure strategy that has a higher probability under
one solution than the other, pick a pure strategy §° that has a higher probability for
all players under one common mixed strategy than the other. The perturbation is
then that for each player that plays §° all other players are rewarded with a bonus of
1, with the corresponding normalized expected value being subtracted from all player

payoffs. The rest of the proof is unchanged.

5.7. Behavior
At bifurcation points behavior changes abruptly. From Proposition 5.4 this hap-

pens only on a lower dimensional subset of the parameter space. A model is, however,
at best a good idealization. There is no sense in thinking that in reality parameters
fall exactly into a lower dimensional set. Near a bifurcation, at best, behavior can
be described by a probability distribution over some nearby set of parameters. This
means that to a good approximation behavior is described by a point in the convex
hull of the limit points of nearby parameters. I have accordingly drawn the “theo-

)

retical predictions,” in Figures 2.1 and 4.1, with vertical segments at the bifurcation
points.

There is a second point that is useful in stating (and proving) theorems about solu-
tions sets. Call a subset Z C Z comprehensive if it is the complement of a (relatively)
closed, lower-dimensional, semi-algebraic subset of Z and F (z) is a single-valued con-
tinuous function on Z. From Proposition 5.11 such sets exist if we allow utility
perturbations, and they exist in many examples even without utility perturbations.
When there is a comprehensive Z it is adequate from the point of view of behavior
to describe F'(z) on Z where it is a continuous function. From a behavioral point of

view, the bifurcation set should be filled with the convex hull of limit points of F(z)

6. Reward Games

I continue to consider unitary largesse, that is, I will assume that each player
has only one type. I first consider a class of simplified versions of the trust and gift
exchange games, that I shall refer to as reward games. These are 2 x 2 games with

the payoff matrix given below in Table 6.1.
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[ Ss[ RrR |
K | E0 E0
I |0,B|r,B—c

Table 6.1: The Reward Game

The payoff parameters in the parameter space Z are restricted to B > ¢ > 0,r >
E > 0,r > c¢. The interpretation is this. The first player has an endowment of F.
They may either K(eep) their endowment or I(nvest) it with player 2. If they keep
the endowment they consume it and player 2 gets nothing. Player 2 may either elect
to R(eciprocate) an investment by returning r at a cost of ¢ or S(elfishly) keep the
entire investment which has a value to them of B. An example of the reward game is
a simplified version of the trust game of Berg, Dickhaut and McCabe (1995). Here
the first player has an endowment of £ = 10. In this simplified version, they can
either invest all or none. If the investment is made, the value to player 2 is tripled
so that B = 30. If they reciprocate, in this simplified version, they can return only
r = 15 which costs ¢ = 15.

6.1. The Reward Game Paradox

Analyzing Nash equilibrium, the unique best response by 2 to a positive probabil-
ity on [ is S and unique best response to S is K, hence the unique Nash equilibrium is
K S with welfare E. This is strictly less than the maximum achievable welfare which
isat IR and is r — ¢+ B > B. The dilemma is similar to the Prisoner’s dilemma in
that there is a unique Nash equilibrium that is welfare sub-optimal, and indeed IR
Pareto dominates I R.

In the laboratory, what is seen is that in fact player 1’s sometimes play I and
player 2’s sometimes return R. The usual interpretation is that this is some sort of
fairness or reciprocity. Fairness says that since IS is unfair to player 1 player 2 will
return something, and this gives an incentive for player 1 to play I. Reciprocity says
that player 1 playing [ is a kind act and should be rewarded by returning something.

By contrast largesse design says that player 2 plays R some of the time both
because it is raises welfare, and because it provides incentives to player 1 to play [

further raising welfare.

6.2. The Solution to the Largesse Design Problem
Denote by o}, 0% the probability that 1 plays I and 2 plays R respectively.
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Proposition 6.1. The setr > c and v'y? > 0 is comprehensive and has three regions.

i. v2 < candy' < E —~%/c then the unique solution to the largesse design

problem 1is
1 ’ch+727’
o] = ———5—,
cE
o2 — VE
B yle 4427
and

— e o).

i. v2 < c and ' > E — ~%r/c, then the unique solution to the largesse design
problem is or = 1, 0% = ~+*/c, and 2W = B + (v*/c)(r — ¢).

ii. y? > c, then the unique solution to the largesse design problem is o} = 0% =1,
and 2W = B +r — ¢, so the first best is obtained.

2W = E + (v'e 4+ ~%r)

Just to emphasize: F(z) is single-valued and continuous on the entire set B > ¢ >
0,r > E > 0,7 > cand 4% > 0 and there are no bifurcations on this set.

Some insight into how largesse design works can be had by considering the case
vt = 0. In this case, the first player will choose I with positive probability only if
0% > E/r. Take the case where 0% = F/r and player 1 is indifferent. How can player
2 be induced to play R this frequently? Playing R means a loss of c. However, player
2 chooses to be vulnerable to that loss only 0% = E/r of the time, and player 1 only
asks them to consider taking the loss only o} of the time. That is, the expected loss
to player 2 is o7 (E/r)c and the incentive constraint says only that this expected loss
must be no greater than v2. If player 1 randomizes onto I sufficiently infrequently
ol (E/r)ec < ~* will be satisfied, and the solution is to take o} (E/r)c = ~* (provided
this is no greater than 1). This idea, that reducing the frequency with which a player
is asked to sacrifice, makes feasible sacrifices by that player, is fundamental to largesse
design.

A related fact is that the probability of the first best outcome IR in cases (i) and
(ii) is ojo% = 7%/c, that is, it does not depend on '. As 4! increases in case (i) o}
increases, but 0% must decline to maintain the incentive constraint for player two.
Hence, the probability of IS increases, while the probability of I R remains the same.

A final and also related observation is that, in the symmetric largesse case in
which ! = ~2, the probability of player 2 playing R is 0% = E/(c + ), independent

of largesse. Here again, the strategy of player 1 must adjust so that the largesse
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constraint for player 2 is satisfied.

Proof. The incentive constraint for player 1 can be written as the expected loss from
I being no greater than ~*

1 1_2 1

and that for player 2 as the expected loss from R being no greater than ~?

12 2
oroRt <.

Consider the second player constraint oro%c < 2. If this is strictly satisfied then
0% can be increased resulting in a weak welfare improvement, while additional slack
is weakly added to the first constraint. That is, more R makes I more attractive to
player 1. Hence, there is a solution to the largesse design problem in which either
ototc=~*or 0% = 1.

Take first the “easy case,” 0% = 1. Then the first constraint is Eo} — ojr < .
As E —r < 0 this is always satisfied, and as o} strictly increases welfare with 0% = 1
it must be that o} = 1. However, the second constraint is satisfied only when ¢ < 2.
Moreover, if this is the case then indeed IR is a first-best equilibrium. This is case
(iii).

Suppose, then, that the second constraint does bind so that o}okc = 4% Then

the first constraint can be written as
o} — (*/c)r < 7"
Welfare is given by
2W = E+ 0}(B — E) + (v*/c)(r — c).

This is increasing in o}, so either Eot — (v2/c)r = 41, or o} = 1. The former case is
y' < E —+2r/c, that is, case (i), and the latter case (ii). O

7. Public Goods

I continue to examine unitary largesse. In 2 x 2 games there is no issue about
where to spend largesse, but only how much can be achieved by spending it. I now

turn to a 3 x 3 class of games in which a decision has to be made on which of the
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two sub-optimal actions the largesse should be used for. Specifically, I consider a
symmetric two player public goods game in which players can choose to free ride, F,
contribute to a public good, C, or both contribute to the public good and punish free
riders, P. I continue to examine the unitary case, and now also make the obvious
symmetry assumption that v! = 7% = 7.

Contributing to the public good has a cost of v + ¢ where v > ¢ > 0, while
contribute to the public good and punishing free riders has a higher v 4+ ¢ + d where
d > 0. You can think of d as a simplified model of costs that arise from trembling.

The public good, if produced, it is worth v to each player. This is additive, so if
both produce the public good, each gets 2v from public good output. If a free rider
is punished, they suffer a cost of p > ¢, so that it is better to contribute than to free
ride if the opponent is punishing. To avoid an uninteresting case, I assume also that

p > d.

7.1. Dominance Solvability

Suppose that v = 0. Then C strictly dominates P. Once P is eliminated F
strictly dominates C. Hence F'F' is the unique solution of iterated strict dominance.

In the laboratory, what is seen is that in fact free riders are sometimes pun-
ished. Once again, the usual interpretation is that this is some sort of fairness or
reciprocity. Fairness free riding is unfair, and fairness can be restored through pun-
ishment. Reciprocity says that free rising is an unkind act and should be reciprocated
by punishment.

By contrast largesse design says that punishment is an effective way to provide

incentives for socially desirable contributions.

7.2. Qverview of the Solution

The big picture is that at 7 = 0 there are only free-riders. As 7 is increased from
zero, initially some free riders use their largesse to produce, and welfare increases
linearly. If the cost of punishment is low in the sense that d/(p —d) < (v —¢)/c
then there is a bifurcation, a value of 7 = (d/p)c, where a new type of equilibrium
is possible. In this equilibrium there are no free-riders, but punishers provide the
incentives for production, and largesse is used to compensate punishers for the cost
of punishment. Welfare jumps up discontinuously.

Bifurcation, the emergence of a new type of equilibrium, is a key feature of models

like this. There are two ways in which largesse can be “spent.” It can be used directly
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to compensate for the cost of production or it can be used indirectly to compensate
for the providing incentives for others. Once enough largesse is available, if the cost
of punishment is not too high, it is better to compensate for providing incentives.
As largesse is increased further, past the bifurcation point, less incentive is needed
for producers, and the number of punishers falls, the number of producers increases,
and welfare increases, until, when there is enough largesse, ¥ = ¢, the first best of

v — ¢ is attained, and production o}, = 1, takes place entirely out of kindness.

7.3. Solution of the Largesse Design Problem

Proposition 7.1. There is a comprehensive set consisting of three different regions
with qualitatively different solutions:

i. if ¥ < ¢ and either 5 < dc/p or d/(p —d) > (v —c)/c then b =0, 0% =7/,
and welfare

W= (7/c)(v=c).

. if de/p <y <candd/(p—d) < (v—c)/c then o}, + o} =1 (no free riders),

and welfare

ii. if ¥ > c then ol = 1 and the solution is first best with welfare W = v — c.

In particular, if d/(p —d) < (v — ¢)/c welfare jumps up at ¥ = de/p, that is, there
is a welfare bifurcation. At this point it becomes possible to entice all the free-riders
to contribute and with a low cost of punishment, d/(p —d) < (v —c¢)/¢, it is desirable

to do so.

Proof. As usual it is useful to dispose of the large largesse, first best, case (iii) first.
If 7 < ¢ then in the solution the constraint must bind and o}, < 1, while if ¥ > ¢
then the solution of the largesse design problem is o}, = 1.
Suppose that the constraint does not bind. In this case shifting a small amount
of weight to C increases welfare without violating the constraint. If % < ¢ and the
constraint does not bind then o}, = 1. This implies that the best response is F, with

a gain of c over C'. Hence, if 7 < ¢, the incentive constraint is violated. On the other
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hand, if 7% > ¢ then o}, = 1 satisfies the incentive constraint, and, as this is the unique
first best, it must be the solution.

We may now assume that 7 < ¢ and that the constraint binds with of, < 1. Since
P is never a best response, this implies that the best response is F. Observe that
¢ and ¢ + d is what is lost by C' and P respectively compared to F' if there is no
punishment, but that both avoid the punishment cost of oLp. Hence the incentive
constraint is

(0t +op)c+opd — (of+op)opp =7

The expected social surplus from output of the public good is o, (v—c)+oh(v—c—d),

while the expected cost of punishment is o!(F)obp, so welfare is given by
W = (oh + )0 ) — ohd — (1 — b — ob)obp.
The incentive constraint can be rewritten in the convenient form

(06 + op —d/p)(c— opp) =7 — dc/p.

This highlights the semi-algebraic nature of the constraint discussed in Section 5.1.
In particular there are two distinct possibilities. If ¢ — obp = 0 then it must be
¥ = dc/p, so this is a candidate for a bifurcation point.

Suppose, indeed, that o) = ¢/p and 5 = de/p. In this case any oh < ol +0oh < 1
is feasible. Increasing ol + op holding fixed o}, preserves the incentive constraint
while reducing the number of free-riders: this unambiguously increases welfare, so it
must be in this case that o}, + o} = 1. Welfare is v — ¢ — dc/p.

If oL, > ¢/p then C is a best response, which is already ruled out, so the other

case is 0% < ¢/p, in which case we can solve

5 —dc/p

ot +op—d/p= e
P

If¥ < dc/p then ol +0p is a decreasing function of ) meaning that as shift players
from C to P the number of free-riders actually increases, so this is unambiguously bad
for welfare. Hence o} = 0 and we can solve the incentive constraint to find of, = 7/c.

If ¥ > dc/p then ol + 0k is an non-decreasing function of . We plug the solution
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of the incentive constraint into the objective function to find
W=——Fv—7-— opp.

The first derivative is

aw _ (—d(c—a}am W—a}ad)p) e

oy \ (c—obp)®  (c—obp)’
_ ([ Ap—de
(c—a})p)Q P

d*W 5 ¥p — dc
= —— | pv.
dop? "\ (e—obp)®) "

Since ¥ > dc/p and ¢ — opp < 0 the function is weakly convex. Hence we must check

The second derivative is

the endpoints to see where the welfare maximum is.
Since o}, + op is an non-decreasing function of o} the endpoints are where o}, +

oL =1 and where o5 = 0. In the former case

1 _
O-P_

and in the latter o} + op = 7/c. Plugging into welfare gives

c—id

Wp = (v—rc) —
p=(v—c p—d

in the former case and
We = (7/c)(v— o).
in the latter. The condition Wp > W can be written as

d <U—C
p—d c

meaning the cost of punishment relative to the size of punishment is not too great. [
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8. Leveraging Reputation

Commitment plays a crucial role in reputational models. That is, while, in a sense,
the goal of these models is to show how reputation can substitute for commitment,
underlying it is a small probability that some players are actually committed. This low
probability of commitment is then bootstrapped to show that non-committed players
never-the-less act committed to keep a good reputation. In the context of largesse
design, players can commit, but they can incur only limited losses from doing so. My
goal here is to explain how a few committed players with limited and possibly very
small largesse can act like “behavioral types” in reputational models to provide good
solutions to the largesse design problem.

A simple setting for studying reputation are the reward games of Section 6, with
payoffs shown again below in Table 8.1, where recall that B > ¢ > 0,7 > E > 0 and

now r > c.

[ s[ Rr |
K | E0 E0
I |0,B|r,B—c

Table 8.1: The Reward Game

Notice that player 2 would like to commit to R to force the first best outcome
I R. However, while limited commitment is available due to largesse, as discussed in
Section 6, I want to examine what happens when the game is played 7" times between
a patient player 2 who receives the time average payoff and a sequence of short-run
player 1’s. T assume that every player 1 has the same distribution of largesse. The

main result is then this:

Proposition 8.1. Fiz any largesse distribution such that for some T both ¢ > 0
and v> > 0. Let Wr denote the solution to the largesse design problem. Then
limy_ oo Wr — r+ B — ¢, the first best.

Proof. Note that certainly Wy <r+ B —c.

By Proposition 5.8 it suffices to prove this in the special case where player 1 is
selfish and player 2 is either type 7 or selfish. That is, there is a single type of
player 1 with v* = 0 and two types of player 2, one with ¢2,72 and the other with

¢y = (1= ¢7),7; =0.
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Rather than trying to compute the solution to the largesse design problem, I use
the technique developed Fudenberg and Levine (1989) for analyzing reputational
models to get a lower bound on welfare. This is done by showing that type 7 can find
a largesse feasible strategy that gives nearly first best welfare, when the selfish players
all best respond. The idea is similar to that used in the reputational literature, that
is, type 7 (with high probability) forever plays the “Stackelberg” action of R. From
Fudenberg and Levine (1989) this implies limy o, Wy — r + B — ¢. However, it
is necessary to show that this strategy also satisfies the largesse constraint. This
requires an upper as well as the usual lower bound on the payoffs of the “rational
type,” here the selfish type of player 2.

As indicated, type 7 with high probability plays R always. In addition, however,
with positive probability type 7 also plays each strategy of the form, play R until
t then play S. The latter part of type 7’s strategy makes it easy to get an upper
bound on the payoff of the selfish type of player 2. Specifically, it forces the short-run
players, after observing S,to conclude either that they face a selfish type or a type
committed to subsequently playing S. Hence, it is a Nash equilibrium for the selfish
player always to play S and the short-run player always to play K after observing S.
With this short-run player strategy, the selfish type of player 2 must play R, except,
possibly, for some fixed number of periods near the end of the game, where they
switch to S.

Since payoff is time average, the loss to type 7 playing R during the final periods

goes to zero as T — 00, so the largesse constraint will be satisfied. O]

I want to emphasize that the er ante nature of the largesse constraint is here
again crucial. That is, type 7 of player 2 has a limited amount of largesse, but they
can spend it in whatever periods they choose. Hence, they are free to lose in a few
periods, provided they do not lose in too many. This is closely connected to way in
which Radner (1980) exploits e-equilibrium to generate cooperation in the finitely

repeated prisoner’s dilemma game.

9. Conclusion

The largesse design problem is economically relevant, but involves maximizing a
function that may not be concave over a set that need not be convex, and which need

not be lower-hemi continuous in parameters. Despite this, solutions exist and are
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well behaved, generically being single valued and continuous. In simple examples, it
is not difficult to characterize solution sets analytically.

From an economic perspective, what these examples show, is that largesse design
is about being opportunistic. It is about using low cost punishments, rewards, and
reputation to encourage other players to pro-social behavior, rather than blindly
acting in a pro-social way. The theory of largesse design provides a sensible and
tractable alternative to psychological theories of preferences, for explaining non-selfish

behavior inside and outside the laboratory.
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