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Abstract

Largesse design asks what happens when players in a game, who have a limited will-

ingness to sacri�ce for the common good, can coordinate on a welfare optimal solution.

This theory provides an alternative to psychological theories in explaining why play-

ers engage in costly punishments and rewards. It also says that players will engage

in other low cost methods of encouraging pro-social behavior, for example, through

reputation e�ects. In this paper, I study the properties and comparative statics of the

largesse design problem. Despite a lack of concavity in the maximization problem,

solutions are unique and continuous except on a lower dimensional bifurcation set. In

examples, I study these bifurcations, in which a small change in the parameters can

lead to a large changes in behavior or welfare.
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1. Introduction

Largesse design asks what happens in a game in which three assumptions are

satis�ed. First, some players are willing to sacri�ce a limited amount of utility, their

largesse, for the common good. Second, they agree on a common goal, social welfare

measured ex ante, before their roles are determined. Third, they are good at solving

coordination problems. Hence, largesse design asks what is the maximum welfare

achievable, and how should players play to achieve that welfare, given that for each

person there is an incentive constraint that they cannot sacri�ce more utility than

they are willing to. Harsanyi (1982) called this rule utilitarianism, and in the voting

literature, Feddersen and Sandroni (2006) refer to it as the ethical voters model.

Largesse design problems have been studied by Feddersen and Sandroni (2006),

in the context of voting, by Dutta, Levine and Modica (2021), in the context of

public goods, and computationally by Levine (2025). In the voting literature the

interaction between groups, each of which solves a largesse design problem, has been

studied by Coate and Conlin (2004), Herrera, Morelli and Nunnari (2016), and by

Levine and Mattozzi (2020). Comparative statics, the mapping from parameters to

solutions, has not been extensively studied, and is the focus of this paper.

The largesse design problem is di�cult, because the constraint set need not be

convex, and the objective function need not be concave. Never-the-less all are de�ned

by polynomials, so the relevant sets and mappings are semi-algebraic. In particular,

I show that, except on a lower dimensional bifurcation set, the map from parameters

to solutions is single valued and continuous. The bifurcation set is of particular

importance, as bifurcations have been seen to occur in the laboratory. For example,

in the centipede game, increasing the stakes, or changing the payo�s in the �nal

round, generally causes the number of rounds before players grab to switch from

relatively high to relatively low.2 Outside the laboratory, bifurcations (or threshold

e�ects, which are the same thing) have been used to explain phenomena such as mass

protests and bank runs.

In addition to the generic single valuedness and continuity of the solution corre-

spondence, I establish other general results about the largesse design problem. Two

of these are straightforward, but useful. First, is establishing the utility transforms

under which the feasible set, and those under which the solution set, remain un-

2See McKelvey and Palfrey (1992), Maniadis (2011), and Cox and James (2015).
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changed. Second, is demonstrating the monotonicity of the feasible set and of welfare

as largesse is increased. Finally, if each player has a distribution of largesse, I show

that that replacing each type with a single type having the average largesse can only

increase welfare. I then give conditions under which welfare and aggregate play re-

main unchanged, as the largesse distribution is altered. In particular if a player is

playing a best response with positive probability, then there is a range of largesse

distributions which do not change the solution.

I study several applications. I am particularly interested in games involving pun-

ishments (similar to ultimatum bargaining and public goods) and rewards (similar to

trust and gift exchange). These are games which have been used in the laboratory

to show that people are not entirely self-interested. These laboratory studies have

been used as the basis for various psychological theories of preferences for fairness and

reciprocity, such as Fehr and Schmidt (1999), Bolton and Ockenfels (2000), Falk and

Fischbacher (2006), and others. I show that largesse design provides an alternative

explanation: that players strategically engage in punishments and rewards to provide

incentives for pro-social behavior.

Largesse design theory is about deploying largesse strategically. As a motivating

example, I consider a simple punisher's dilemma game, in which a second player can

strategically punish a �rst player, for anti-social behavior. This game is designed to

highlight the di�erences with existing theories. Sel�sh players, altruistic players, and

Fehr and Schmidt (1999) fairness players never punish. In the solution to the largesse

design problem, when largesse is low, the second player does not punish, and the �rst

player engages in a low level of pro-social behavior, much as a mildly altruistic player

would. As largesse increases, there is a bifurcation, and it becomes optimal for the

second player to begin punishing the �rst player for anti-social behavior. This leads

to a rapid increase in welfare as largesse increases. After the punishment is enough to

induce the �rst player to act pro-socially with probability one, as largesse increases

further, additional, smaller, gains take place as the second player reduces the socially

costly punishments.

The second application is a family of reward games, similar to the trust game.

These I study in greater detail. Unlike the punishment game, here there is no bi-

furcation, but rather as largesse increases, increased largesse by the receiver enables

them to provide a higher rate of return, leading the sender to invest more. The third

application considers a symmetric public goods game in which there are three choices:
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to free ride, to contribute to the public good, or to contribute to the public good and

punish free-riders. As in the case in the simple punisher's dilemma, there is a bifur-

cation. With three actions it is more dramatic. A small increase in largesse not only

changes behavior from free riding to punishing, but welfare jumps up discontinuously

when this occurs.

The �nal application looks at an alternative way in which largesse can be used

strategically to encourage players to behave pro-socially. Largesse design is a theory

of commitment with an ex ante constraint on the amount that players are willing

to lose. Reputation theory is based on the existence of at least a small number of

committed players. I show how, in largesse design, the endogenous commitment of a

few players, with relatively small largesse, can be bootstrapped to give good welfare

results in a game between a long-run player and a sequence of short-run opponents.

2. Literature Review

Before proceeding, I would like to convince you that the theory is relevant. I hope

I do not have to convince you that some people are willing to make limited sacri�ces

for the common good.

With respect to social welfare as a criterion, I am going to observe that in lab-

oratory studies (see in particular the review by Fehr and Charness (2024)) people

care about both e�ciency and fairness. With risk averse individuals, social welfare

is a parsimonious model of people who care about both. Greater e�ciency raises

welfare, and, with risk aversion, greater fairness corresponds to better insurance, and

also raises welfare. I am not going to argue that people necessarily agree that ex

ante social welfare is the right goal. Rather, I am going to propose it is a reasonable

criterion, and I am going to ask what happens they do. To this I will add that in

Levine (2025) I show that it works well in explaining laboratory behavior.

I feel I do need to convince you that people are good at solving coordination

problems, both inside and outside the laboratory. This is in light of the fact that, in

the experimental lab, beginning with Van Huyck, Battalio and Beil (1990)'s study

of the minimum game, coordination failures have been documented, and indeed there

are a variety of theories, risk dominance and global games most prominently, that

aim to predict when coordination failure will occur.

I am going to propose that these failures of coordination are not due to the inability

of people to coordinate, but rather that, in the laboratory, as well as outside, the
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environment is noisy. Let me start with the Van Huyck, Battalio and Beil (1990)

minimum game, with 15 or more players, in which it is observed that experienced

players, rather than coordinating on the welfare optimal highest level of e�ort, instead

only manage the least level of e�ort. My observation is this: with 15 or more players,

in a game where only the minimum level of contribution to a public good matters,

then if players tremble, it is highly likely that one will ruin things for everybody.

Speci�cally, (see Levine (2025)) if 1/3 of the players tremble uniformly then, in

fact, the only equilibrium is for all non-trembling players to provide the least e�ort.

Hence, in the relevant normal form, the one with trembling, they in fact coordinate

on the welfare optimal equilibrium, as there is only one equilibrium. Now 1/3 of the

players trembling uniformly may seem like a lot: 29% of the time should they be

playing more than the least level of e�ort. In fact, in the Van Huyck, Battalio and

Beil (1990) data in the �nal of ten periods, and despite the fact that in the previous

six periods the minimum level of e�ort was the least possible, 29% are providing more

than the least level and, indeed, 10% are providing the highest level.

I turn next to two meta-studies. The �rst is a meta-study of 2 × 2 stag hunt

experiments by Dal Bo, Frechette and Kim (2021). These are strangers treatments

in which players played at least eight times. In this game, the welfare optimum is for

all to hunt stag, and the basin is de�ned as the greatest probability of hare that makes

it optimal for all to hunt stag. The second is a meta-study of inde�nitely repeated

prisoner's dilemma experiments by Levine (2024). These are strangers treatments in

which players played at least �fteen times. Here I follow the literature in de�ning the

basin with respect to the 2×2 game in which the strategies or grim-trigger and always

defect. I report welfare with utility normalized, as is standard in the literature, to

zero for mutual defection and one for mutual cooperation. This is the same as the

cooperation rate if play is perfectly correlated or if the o�-diagonal welfare is 1/2 and

is highly correlated with the cooperation rate.

Below, in Figure 2.1, I report the theory and the data for the di�erent treatments.

On the horizontal axis is the basin of the treatment, on the vertical axis is the fraction

of time the players chose stag for the stag hunt games and the normalized welfare

for the inde�nitely repeated prisoner's dilemma games. The red correspondence is

the best equilibrium when players tremble uniformly 1/3rd of the time. The blue

correspondence is the predicted probability from both risk dominance and global

games, which are the same in this setting, and both of which predict the �good�
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equilibrium of stag or grim-trigger if the basin is greater than 50%, and the bad

equilibrium of hare or �always defect� if the basin is less than 50%.

Figure 2.1: Stag Hunt and Inde�nitely Repeated Prisoner's Dilemma Meta-studies

dots: data
blue: risk dominance/global games
red: best equilibrium with 1/3 probability of uniform tremble

left panel: stag hunt treatments, period 8
vertical axis: frequency of stag

right panel: inde�nitely repeated prisoner's dilemma treatments, all periods starting
in period 10

vertical axis: welfare with payo� to mutual defection normalized to zero and
mutual cooperation to one

I believe that these two graphs show that best equilibrium with trembling is a

viable alternative to risk dominance and global games for explaining what happens

in coordination games.

Beyond this, I have documented in Levine (2025) that a simple theory of 1/3

uniform trembling in a largesse design problem in which half the population is sel�sh,

and half have a largesse of roughly $1.00 over the course of play, does a good job in

predicting the play of experimental participants across a wide variety of experiments.

This built on earlier work by Dutta, Levine and Modica (2021), in which we examined
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the largesse design problem both inside and outside the laboratory.

Outside the Laboratory

Outside the laboratory, two Nobel prizes have been awarded for documenting the

ability of people to coordinate on good equilibria: Coase (1960) and Ostrom (1990).

I would add to this also the work of Townsend (1994) on insurance in rural societies.

Indeed: the entire premise of contract theory is that people are pretty good at �guring

out good solutions to social dilemmas. Outside the laboratory, of course more time

is available and people can talk, but the problems tend to be more complex. The

success of market design as a commercial enterprise convinces me of two things. First,

people cannot necessarily solve hard problems, but they would like to.

In voting theory, the theory of ethical voters or rule utilitarianism, which give

rises the largesse design problem have been studied theoretically by Feddersen and

Sandroni (2006), and empirically by Coate and Conlin (2004). Subsequently the

model has been widely used by other authors, such as Herrera, Morelli and Nunnari

(2016).

As I indicated, the idea of largesse design is closely connected to the idea of rule

utilitarianism. This is an idea dating back to Mill (1861), and is described by Garner

and Rosen (1967) as �the rightness or wrongness of a particular action is a function

of the correctness of the rule of which it is an instance.� This is in contrast to act

utilitarianism, a more commonly used concept in economics. The di�erence between

the two ideas can be illustrated by the punishment of a free-rider in a public good

game. As an act this is unambiguously bad, as it lowers welfare. However, used

as a rule, it can be good, because it encourages people to contribute to the public

good. The idea that rule utilitarianism is an individualistic way to solve coordination

problems was studied in Harsanyi (1982).

Finally, the feasible set for the largesse design problem has a close connection

to the idea of ε-equilibrium, introduced in Radner (1980). In largesse design each

type of each player can have a di�erent value of ε and it need not be small, but the

relaxation of the constraints through largesse is exactly that from ε-equilibrium.

3. The Model

The setting is that of a normal form game. There are n players and each player

has a �nite strategy space si ∈ Si with payo�s ui(si, s−i). The space of pure strategy
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pro�les is denoted by S. If there are trembles, then strategies represent intentions,

and the normal form is the corresponding expected utility, that is, trembles are taken

to already be incorporated into the normal form of the game.

Each player has a �nite type space T i with types denoted by τ . Denote the set

of all types by T = ∪ni=1T
i. The fraction of type τ is denoted by φτ ≥ 0 where

the fractions of types of a single player add up to one: for each i it is the case that∑
τ∈T i φτ = 1. Each type is characterized by a non-negative largesse γτ ≥ 0. Types

are private information.

Let σiτ denote a mixed strategy for type τ ∈ T i, and let σ be a vector of such

mixed strategies. Denote by Σ the corresponding set of pro�les. De�ne the induced

mixture from all types of player i by σi =
∑

τ∈T i φτσ
i
τ . For a given vector σ ∈ Σ

of mixed strategies for each player and type let ui(σiτ , σ
−i) be the expected utility of

type τ of player i. Given σ each type τ ∈ T i of player i faces an incentive constraint

that the gain from deviating is no greater than γτ

gτ (σ) ≡ max
si∈Si

ui(si, σ−i)− ui(σiτ , σ−i) ≤ γτ .

If this is satis�ed for all players and types we say that σ is incentive compatible. If

γτ = 0 for all τ , then incentive compatibility is the same as Nash equilibrium.

Expected per capita social welfare from σ is given by

W (σ) ≡
n∑
i=1

∑
τ∈T i

φτu
i(σiτ , σ

−i)/n =
n∑
i=1

ui(σ)/n.

The largesse design problem is to �nd the σ that maximizes social welfare subject to

incentive compatibility. If γτ = 0 for all τ this is the same as choosing the welfare

optimal Nash equilibrium.

Several special cases are of particular interest. If there is only one type of each

player we say that largesse is unitary, and replace the redundant type subscript τ in

γτ with the player superscript, γi. If each player draws from the same distribution of

types we say that largesse is symmetric. A type with largesse γτ = 0 is called sel�sh.

4. The Punisher's Dilemma

The punisher's dilemma is a 2× 2 game. The �rst player, called the US, chooses

between (F)ighting and (C)onceding, and the second player, called the SU, chooses
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between (S)tanding aside, and (P)unishing. Punishing involves building a doomsday

machine. Take �rst the case where the SU stands aside. If the US �ghts both get 4.

If the US concedes they get less, 3, but the SU gets more, 7. Conceding is welfare

superior, as it avoid the cost of �ghting.

On the other hand, it costs 1 to build a doomsday machine. This machine will be

activated only if the US �ghts, in which case it will explode causing 2 units of damage

to the US (and none to the SU). This is summarized in the payo�s matrix in Table

4.1 below.

S P

F 4, 4 2, 3
C 3, 7 3, 6

Table 4.1: Punisher's Dilemma Game�

A key fact about this game is that a sel�sh, altruistic, or Fehr and Schmidt (1999)

fairness SU will never build a doomsday machine. For sel�sh SU, standing aside,

S strictly dominates building a doomsday machine. Moreover, it strictly dominates

from a welfare point of view as well, so an altruistic SU would never would also never

build a doomsday machine. For a Fehr and Schmidt (1999) fairness SU when the US

plays F the choice S is strictly better from a fairness point of view. When the US

plays C the gain in fairness to the US from the SU punishing is 1 and the cost to

the SU is 1 and Fehr and Schmidt (1999) assume that no player would make such a

trade-o�.

Notice that when the SU is playing S neither the sel�sh nor Fehr and Schmidt

(1999) US would play C so that the unique outcome is FS.

In contrast to the other theories, largesse design predicts that doomsday machines

will sometimes be built. Speci�cally, I analyze the unitary symmetric case, in which

there is one type of each player, and both have the same largesse: γ1 = γ2 = γ.

Figure 4.1 below summarizes Proposition 4.1 below, characterizing the solution of

the largesse design problem.
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Figure 4.1: Punisher's Dilemma Game

welfare measured as fraction of di�erence between FS and CS
solid line: welfare from solution of largesse design problem
dotted line: welfare from largesse of player 1 only (γ2 = 0)
red: σ2

P , the probability of P in the solution of largesse design problem

Denote by σ1
C and σ2

P the probabilities of the (single types of) US conceding and

the SU of building a doomsday machine. The cost of building a doomsday machine is

1, so the incentive constraint for the SU is σ2
P ≤ γ. For low levels of largesse, γ, the

cost from this low level of punishment is too great to justify the small improvement

in incentives for the US. Hence the optimum is to take σ2
P = 0 and rely solely on

the largesse of the US to get a low level of concession. When γ = 1/4 this changes,

and there is a bifurcation, two equally good solutions, one with σ2
P = 0 and one

with σ2
P = γ. Beyond this point it is better to use punishment, and σ2

P jumps up.

As γ rises so does σ2
P and welfare rises rapidly. Always, σ1

C is chosen as large as is

feasible. At γ = 1/3, this maximum feasible σ1
C reaches 1. After this σ2

P should be

reduced to avoid a costly and unnecessary punishment. Note that this �least possible

punishment� is characteristic of the largesse design problem.

Notice in particular the subtle behavior of σ2
P . It is initially zero. At γ = 1/4 it

jumps up, then rises linearly until γ = 1/3, following which it declines linearly. I will

show later that this behavior - a solution that is unique and continuous except on a
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lower dimensional bifurcation set (here γ = 1/4) - is typical of solutions of the largesse

design problem. Notice that in this case behavior, as measured by σ bifurcates, but

welfare is continuous. I will refer to such a case as a behavioral bifurcation. As I will

show later, there can also be welfare bifurcations, in which welfare jumps.

To understand a bit better why doomsday machines are useful for the largesse

design problem, focus on the case in which γ = 1/2. If no doomsday machine is built,

the US must satisfy γ1C ≤ 1/2 so the highest possible welfare is 1/2 of 8 and 1/2 of 10,

which is to say 9. By contrast, with γ = 1/2 the SU could build a doomsday machine

with probability σ2
P = 1/2 which would make the US indi�erent between �ghting

and conceding. The welfare optimum is when they concede, in which case welfare is

50−50 between CS and CP , which is to say 9.5, de�nitely better than the 9 that can

be obtained using solely US largesse. Notice, though, that when γ = 1/2 the optimal

choice of σ2
P 6= 1/2. Because they have largesse, the US is willing to concede with

probability 1 even if it involves a loss. That is, their constraint is strictly satis�ed.

Hence, σ2
P should be reduced until the US constraint is satis�ed with equality, raising

welfare by reducing the cost of punishment.

These results are summarized in Proposition 4.1 below.

Proposition 4.1. There are �ve regions

i. γ < 1/4, the solution is unique, σ1
C = γ, σ2

P = 0 and 2W = 8 + 2γ

ii. γ = 1/4 , there are two solutions σ1
C = 1/4, σ2

P = 0 and σ1
C = 1/2, σ2

P = 1/4,

and both give welfare 2W = 8.5.

iii. 1/4 < γ ≤ 1/3, the solution is unique, σ1
C = γ/(1 − 2γ), σ2

P = γ and

2W = 8− 3γ + 2γ (1 + γ) /(1− 2γ)

iv. 1/3 ≤ γ < 1, the solution is unique, σ1
C = 1, σ2

P = (1 − γ)/2 and 2W =

9.5 + γ/2

v. γ ≥ 1, the solution is unique and �rst best, σ1
C = 1, σ2

P = 0 and 2W = 10

Proof. The objective function is

2W = 8− 3σ2
P + 2σ1

C

(
1 + σ2

P

)
.

The incentive constraint for 2 is σ2
P ≤ γ.

If in a solution C is a best response, then σ1
P ≥ 1/2, and this implies γ ≥ 1/2.

It follows that σ1
C = 1 since this certainly satis�es the incentive constraints, and

maximizes welfare. Welfare is then 2W = 10 − σ2
P , so it is desirable to decrease σ1

P .
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If σ1
P > 1/2 this cannot be optimal. Moreover, since γ ≥ 1/2 it is possible to lower

σ1
P further without violating the incentive constraint for player 1.

It follows that F is always a best response in any solution. Hence the incentive

constraint for player 1 is

σ1
C

(
1− 2σ2

P

)
≤ γ. (4.1)

If the incentive constraint for player 1 does not bind, welfare can be improved by

increasing σ1
C since this does not a�ect the constraint for player 2. Hence either the

constraint binds or σ1
C = 1. If σ1

C = 1 welfare can be improved by decreasing σ2
P , so

if the constraint does not bind, then σ1
C = 1 and σ2

P = 0. This is feasible if and only

if γ ≥ 1 which is case (v).

Assume, then, that the incentive constraint for player 1 does bind. Solve it to �nd

σ1
C =

γ

1− 2σ2
P

(4.2)

if σ2
P < (1− γ)/2. In this case welfare is given by

2W = 8− 3σ2
P + 2γ

1 + σ2
P

1− 2σ2
P

.

It can be checked that the second derivative is positive, so the solution is to either

take σ2
P = 0 or as large as is feasible. The welfare di�erence between σ2

P = γ and

σ2
P = 0 is then given by

−5γ + 2γ
1 + γ

1− 2γ
.

This has a root at γ = 0 and at γ = 1/4, and is negative in between. This gives case

(i) and half of case (ii).

For γ ≥ 1/4 and σ1
C < 1 it is then optimal to choose σ2

P as large as possible, that

is, σ2
P = γ. From 4.2 this gives

σ1
C =

γ

1− 2γ
.

Observing that this equals 1 at γ = 1/3 gives the rest of case (ii) and case (iii).

Once σ1
C = 1 welfare is 2W = 10−σ2

P ,so σ
2
P should be chosen as small as possible,

which, from 4.1 is σ2
P = (1− γ)/2. As this is equal to 0 at γ = 1, that completes case

(iv).
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5. Basic Theory

Existence of a solution is fundamental and fairly obvious. For completeness I state

and prove this.

Proposition 5.1. The incentive compatible set is compact and non-empty. A solution

to the largesse design problem exists and the set of solutions is compact.

Proof. The incentive compatible set is non-empty because it contains all Nash equilib-

ria, and is closed because it is de�ned by continuous functions and weak inequalities.

It is bounded because it lies in the simplex. The objective function is continuous.

Hence there is a maximum, and the argmax set is compact.

Notice, however, that the constraint set, while closed, is not generally convex and

the objective function, while continuous, is not generally concave. Despite this, the

solution correspondence has strong properties.

Fix the set of players and the spaces of pure strategies Si. The largesse design

problem is parametrized by the utility vector, any point in <#S, the type distribution,

any point in the cartesian product of type simplices Φ, and the largesse vector, any

point in <#T
+ . The parameter space is some Z ⊆ <#S ×<#T

+ × Φ.

For each z ∈ Z let F (z) ⊆ Σ denote the feasible set, that is, the subset of σ ∈ Σ

where g(σ) ≤ γ, let F̂ (z) denote the solutions to the largesse design problem, and let

Ŵ (z) be the corresponding welfare.

Proposition 5.2. The correspondence z ⇒ F (z) is upper-hemi continuous and com-

pact valued.

Proof. It is compact valued by Proposition 5.1, and upper-hemi continuous because

it is de�ned by weak inequalities and continuous functions.

Corollary 5.3. If zn → z then limW (zn) ≤ W (z).

This says that welfare can jump up in the limit, but not down.

Proof. Let σ̂n ∈ F̂ (zn) be a convergent sub-sequence. By Proposition 5.2 σ̃ = lim σ̂n ∈
F (z). Hence, since the objective function is continuous, limW (zn) = limW (σ̂n, zn) =

W (σ̃, z) ≤ W (z).
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5.1. Generic Continuity

Upper-hemi continuity of the feasibility correspondence might seem like the end

of it: neither F̂ (z) nor Ŵ (z) is upper-hemi continuous. Indeed, take the unitary

symmetric case with γ1 = γ2 = 0 and consider the �prisoner's dilemma game� below

in Table 5.1 where B < 3.

D C

D 0, 0 B,−1
C −1, B 1, 1

Table 5.1: The �Prisoner's Dilemma Game�

For B > 1 this is indeed a prisoner's dilemma game, F (B) = F̂ (B) = {DD},
Ŵ (B) = 0, and there is nothing more to be said. However, when B = 1 this is a

coordination game, F (B) = {DD,CC}, and both F̂ (B) and Ŵ (B) jump to CC and

1 respectively. When B < 1 the feasible set F (B) has three points, {DD,CC} and
the mixed Nash equilibrium, while F̂ (B) and Ŵ (B) remain unchanged. Notice that

in the unitary symmetric case, with γ1 = γ2 = γ > 0, the same jump occurs, albeit

at B − 1 = γ.

In contrast to the example of section 4, in this bifurcation welfare jumps along

with behavior. As indicated, I refer to this as a welfare bifurcation. Notice that,

like the bifurcation in section 4, the bifurcation is �rare� in the sense that it occurs

only on a set of dimension 0, in this case the set B = γ + 1. It turns out that the

property that bifurcations occur only on lower dimensional sets is true in general. To

understand why, it is important that the utility functions are not only continuous in

the parameters and mixed strategies, but are polynomials.

A set de�ned by polynomial equalities and (strict) inequalities, and the unions of

such sets are called semi-algebraic, and have strong properties.3 Coste (2002) is a

good reference, and Blume and Zame (1994) provide a good summary. Chief among

these properties are that unions, intersections, complements, boundaries, interiors,

and closures of semi-algebraic sets are semi-algebraic. Semi-algebraic sets are a �nite

union of connected real-analytic manifolds, and the dimension of a semi-algebraic set

is the largest dimension of such a manifold. The boundary of a semi-algebraic set has

lower dimension than the original set.

3I am grateful to Klaus Ritzberger for pointing this out to me.



5.2 Compressed Models 15

A correspondence with semi-algebraic graph is called semi-algebraic. The values

of a semi-algebraic correspondence are semi-algebraic sets. Semi-algebraic functions

satisfy a variation on the implicit function theorem and Sard's theorem, called the

Hardt Triviality Theorem.

From this point forward, I am going to assume that the parameter space Z is

semi-algebraic. This implies that the constraint correspondence F is semi-algebraic.

A detailed proof can be found in Blume and Zame (1994), who consider Nash equilib-

rium, but their proof applies if we replace 0 by γi in their constraints. Besides Blume

and Zame (1994), a series of papers by Govindan and Wilson, for example, Govindan

and Wilson (2009), also use the semi-algebraic properties of incentive constraints to

prove results about re�nements of Nash equilibrium, such as forward induction and

strategic stability.

Write W (σ, z) to make transparent the dependence of welfare on the parameters.

In the current setting, consider that the solution correspondence can be written as

σ ∈ F̂ (z)⇐⇒

∀σ′, ((W (σ, z) > W (σ′, z)) ∧ (W (σ, z) = W (σ′, z))) ∨ (σ′ ∈ F (z)) ∨ (σ ∈ F (z))) .

This set is not obviously semi-algebraic because it uses the quanti�er ∀σ′, but the
Tarski-Seidenberg Theorem asserts that this does not matter, that, in fact, a set

de�ned by polynomial equalities and inequalities, logical operations, and quanti�ers,

is semi-algebraic, that is, can be de�ned by (a di�erent set of) polynomial equalities

and inequalities without quanti�ers. Hence the solution correspondences F̂ (z), Ŵ (z)

are semi-algebraic.

Proposition 5.4. The correspondence z ⇒ (F (z), F̂ (z), Ŵ (z)) is continuous (up-

per and lower) at every point of the complement of a (relatively) closed, lower-

dimensional, semi-algebraic subset of Z.

Proof. A lemma in Blume and Zame (1994), shows this to be true for any compact

valued semi-algebraic correspondence on a semi-algebraic domain.

5.2. Compressed Models

The basic idea of this subsection is that heterogeneity in largesse, that is, multiple

types and divergence from the unitary largesse model, only matters when largesse
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is large. If largesse is small then players �should� be playing best responses most

of the time, and if they do, the remaining small probability of playing something

better can be distributed among di�erent types in proportion to their largesse. This

breaks down when players are not playing best responses most of the time, because

there may be too many players with small largesse who are unable to play non-best

responses frequently.

For any given model, we can de�ne a unitary model, the compressed model, as the

model with a single type of each player with the average largesse γi ≡
∑

τ∈T i φτγτ . If

σ is incentive compatible in the original model then σ is clearly incentive compatible

in the compressed model, so that W ≥ W . If in fact W = W , I say that the

model compresses. In this case, if σ̂ solves the original problem, then σ̂ solves the

compressed problem, as it is feasible there and gives the maximum possible welfare.

In other words, the description of a player's play aggregated across types is the same

for the original and compressed models.

As indicated, a model need not compress. Consider, for example, the two player

dictator game with risk aversion in which the �rst player must choose between keeping

an endowment giving a utility of (8, 0) and splitting the endowment giving a utility

of (5, 5). Here, as will be the case when both players are risk averse, the unequal split

provides less welfare than the equal split. Suppose that there are two equally likely

types of player 1 with largesse 0 and 6, that is, one type is sel�sh. Then γ = 3, so that

the solution of the compressed problem is for player 1 to split the endowment with

probability 1. However, this is not feasible in the original problem, since the sel�sh

player will never split the endowment, and so there is only a �fty percent probability

of player 1 splitting the endowment. On the other hand, if the two types have largesse

0 and 3 then the solution of the compressed model with γ = 1.5 is to split half the

time, and this is the same solution as the original model where the sel�sh players do

not split, and the remaining players always do

Which case is relevant? The case where the model fails to compress as in the

counter-example, or the case where it does compress as occurs with less largesse? Let

BRi(σ) denote the set of best responses to σ−i by player i. The next result gives a

su�cient condition for a model to compress.

Proposition 5.5. Let σ̂ be a solution of the compressed model. Let γ̂i ≡ maxτ∈T i γτ .
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If for each player i we have

Σi ≡
∑

si /∈BR(σ̂)

σ̂
i
(si) ≤ γi/γ̂i (5.1)

then σ̂iτ (s
i) ≡ (γτ/γ)σ̂

i
for si /∈ BR(σ) and

σ̂iτ (s
i) ≡

(
1− (γτ/γ)Σi

)
σ̂
i
(si)/

∑
si∈BR(σ̂)

σ̂
i
(si)

for si ∈ BR(σ) is a solution to the original problem and W (σ̂) = W (σ̂). That is,

when 5.1 holds, the model compresses.

What this says is that if the solution of the compressed problem has a su�ciently

high probability of playing a best response for each player, then it is also a �solution�

to the original problem. If the original problem was unitary, then the condition

in equation 5.1 is always satis�ed. More generally, equation 5.1 can be viewed as

establishing the amount of heterogeneity in largesse that is consistent with an original

model that has the �same� solution as the unitary model.

As an example, consider the punisher's dilemma game from section 4. In the

range γ between 1/4 and 1/3 the largest probability of not playing a best response

is by player 1 and is σ1
C = γ/(1 − 2γ). Suppose there are two types, with the same

distribution for both players, a sel�sh type with largesse 0 and an ethical type τ = E

with probability φE and largesse γ/φE. Then from Proposition 5.5 the solution for the

compressed problem is valid for the two type problem provided γ/φE ≤ γ/(1 − 2γ).

In other words, φE ≥ 1− 2γ. This ranges from φE ≥ 1/2 at γ = 1/4 to φE ≥ 2/3 at

γ = 1/3.

Proof. Since W (σ̂) ≤ W (σ̂) it su�ces to prove that σ̂ is feasible in the original

problem.

First, observe that σ̂ = σ̂. For si /∈ BRi(σ) we have σ̂
i
(si) =

∑
τ∈T i φτ (γτ/γ

i)σ̂
i
(si) =

σ̂
i
(si). For si ∈ BR(σ) we have

σ̂
i
(si) =

∑
τ∈T i

φτ
(
1− (γτ/γ

i)Σi
)
σ̂
i
(si)/

∑
si∈BR(σ̂)

σ̂
i
(si) = σ̂

i
(si).

The incentive constraints are always satis�ed for σi ∈ BRi(σ) so in the original
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problem the incentive constraints are

∑
si /∈BR(σ̂)

(
max
si∈Si

ui(si, σ−i)− ui((γτ/γi)σ̂
i
(si), σ−i)

)
≤ γτ ,

which are satis�ed since the constraints are satis�ed in the compressed model.

The crucial step is to check that σ̂iτ is actually a probability distribution, that is,

(γτ/γ
i)Σi ≤ 1. Then

(γτ/γ
i)Σi = (γτ/γ)

∑
si /∈BR(σ̂)

σ̂
i
(si) ≤ (γ̂i/γi)

∑
si /∈BR(σ̂)

σ̂
i
(si).

By the assumption, equation 5.1, this �nal expression is less than or equal to one.

It is tempting to think that when γ is small, a best response must be played with

high probability. Because of mixing this might not be the case, but when the solution

for γ = 0 is unique and a strict Nash equilibrium, if we bound the ratios of the γτ 's,

then, indeed, the model compresses.

Proposition 5.6. Suppose that ZB are z such that γi/γ̂i ≥ B or γ = 0. Suppose at

ẑ ∈ ZB that γ̂ = 0 and that the solution to the largesse design problem is unique and

is a strict Nash equilibrium σ̂. Then there is a neighborhood of ẑ in ZB in which the

model compresses.

In particular if we �x the payo�s, the types distribution and γ, and consider

models λγ where λ is a positive scalar constant, and the solution to the largesse

design problem is unique and a strict Nash equilibrium, then, for small enough λ, the

model compresses.

Proof. Consider

Σ(z) ≡ max
i

sup
σ̂
i|σ̂∈F̂ (z)

∑
si /∈BRi(σ̂)

σ̂
i
(si).

By Proposition 5.5 in ZB if Σ(z) ≤ B the model compresses. Suppose that in every

neighborhood of ẑ in ZB there is some zn such that the model does not compress, so

that in particular Σ(zn) > B. We can choose a sequence σ̂
n ∈ F̂ (z) so that Σ(zn)−

maxi
∑

si /∈BRi(σ̂
n
) σ̂(sin) ≤ B/2. Hence maxi

∑
si /∈BRi(σ̂

n
) σ̂(sin) ≥ B/2. Consider a

convergent sub-sequence σ̂
n → σ̃. If σ̃ = σ̂ then maxi

∑
si /∈BRi(σ̂

n
) σ̂(sin)→ 0 since σ̂

is strict. This is a contradiction, so σ̃ 6= σ̂.
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Since the solution to the largesse design problem at ẑ is assumed to be unique,

we conclude that W (σ̃) < W (σ̂). However, γ̂ = 0, so σ̂ is feasible for all z. Hence

W (σ̂
n
) ≥ W (σ̂), and by continuity of W this implies W (σ̃) ≥ W (σ̂). This contradic-

tion concludes the proof.

5.3. Utility Transformations

It is useful to know when we can transform payo�s without changing the solution

to the problem. Again, the next result is fairly obvious, but useful to have stated.

Proposition 5.7. Consider the largesse design problem transformed by Ai, βi >

0, vi(s−i) with transformed utility ũi(si, s−i) = Ai +βiui(si, s−i) + vi(s−i) and largesse

γ̃τ = βiγτ . The incentive compatible set of the transformed problem is the same as

the original problem. If βi = βj and vi(s−i) = 0, then the set of solutions in the

transformed problem is that same as in the original problem.

Proof. The transformed incentive constraints are

Ai + βui(σiτ , σ̃
−i) + βiγτ ≥ Ai + βiui(si, σ̃−i)

which is equivalent to the original. When βi = βj and vi(s−i) = 0 the transformed

objective function is

n∑
i=1

∑
τ∈T i

φτ (A
i + βu(σiτ , σ̃

−i))/n =
n∑
i=1

∑
τ∈T i

φτA
i/n+ βW (σ)

equivalent to the original.

Note the importance of βi = βj for the solutions to remain the same. Using

di�erent multipliers for di�erent players implicitly changes the utility weights on

di�erent players, and results in a di�erent social welfare function. Equivalently, this

is saying that utility for di�erent players must be measured in compatible units.

5.4. Monotonicity

Another obvious, but useful, result is that increasing largesse can only increase

welfare.

Proposition 5.8. Fix a normal form game and suppose that γ′ ≥ γ. Then the welfare

W ′ from the solution of the γ′ problem satis�es W ′ ≥ W , where W is the welfare from

the solution of the γ problem.
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Proof. The solution of the γ′ problem is feasible in the γ problem.

Clearly, if largesse is large enough, the �rst best is attainable.

Proposition 5.9. Generically there is a unique �rst best pro�le, which is in pure

strategies. Denote the pro�le in which all types play the �rst best by σ̂. Then the

solution to the largesse design problem is �rst best if and only if γ ≥ g(σ̂).

Proof. Generically each pure pro�le has a di�erent level of welfare, so there is a

unique welfare maximizing pure strategy. This is welfare maximizing also over mixed

strategies, since mixed strategies induce a probability distribution over the entire

pro�le space. Clear then, the �rst best is attainable if and only if σ̂ is incentive

compatible.

5.5. Two Player Games

Proposition 5.10. In a two player game either a constraint binds or the outcome is

the �rst best.

Proof. If no constraint binds then the outcome must be an interior local welfare

maximum. Since the objective function is quadratic, an interior local maximum is a

global maximum.

5.6. Uniqueness

Say that Z allows utility perturbations if for z = (u, γ, φ) ∈ Z there is an open

neighborhood O of u such that (O, γ, φ) ⊆ Z. Let F̂ denote the projection of F̂ onto

the aggregate strategies σ derived from the type strategies σ.

Theorem 5.11. Suppose that Z allows utility perturbations. Then F̂ (z) is continuous

function (a singleton) at every point of the complement of a (relatively) closed, lower-

dimensional, semi-algebraic subset of Z.

This cannot be true in F̂ . Consider the punisher's dilemma game where 1 > γ >

1/3. Suppose that there are two types with generic γτ close to γ. Since the constraint

for player 2 is slack, we are free to shift the burden of punishment slightly between

the two types without violating the incentive constraints. Perturbing payo�s, and so

forth, a small amount will not change this. In other words, the behavior of a player

is generically unique, but behavior of each type need not be.
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Proof. The idea of the proof is to prove that if there are multiple solutions in F̂ (z) then

F̂ (z) fails to be lower-hemi continuous. The result then follows from Proposition 5.4.

That proposition asserts that at every point of the complement of a (relatively) closed,

lower-dimensional, semi-algebraic subset of Z the correspondence F̂ is continuous,

hence so is the projection F̂ .

To show that when there are multiple solutions in F̂ (z) then F̂ (z) fails to be lower-

hemi continuous, it su�ces to show that a solution can be perturbed away. That is,

it su�ces to exhibit a sequence zm → z, a σ ∈ F̂ (z), and a closed (and therefore

compact) set H not containing σ such that σm ∈ F̂ (zm) implies σm ∈ H.

For an aggregate mixed strategy σ it will be useful to let π(σ) denote the prob-

ability distribution over outcomes induced by σ. To carry out the construction, the

perturbations zm will perturb the payo�s of player i by ui(s) + λmvi(s−i), where

λm > 0 and λm → 0. Hence, by Proposition 5.7 the feasible sets F (zm) = F (z)

are constant. Let x(s) =
∑

i v
i(s−i)/n. The perturbed objective function is then

w(σ, zm) = w(σ, z) + λmx · π(σ).

Suppose that F̂ (z) has at least two points, σ̂ 6= σ̃. Then for some player i and

ŝi ∈ Si it must be that σ̂i(ŝi) > σ̃
i
(ŝi). For j 6= i take

vj(s−j) =

{
1

0

si = ŝi

si 6= ŝi

and take vi(s−i) = −(n − 1)σ̂
i
(ŝi). Then x · π(σ) = ((n − 1)/n)

(
σi(ŝi)− σ̂(ŝi)

)
. In

particular, x · π(σ̂) = 0 and x · π(σ̃) < 0. The idea is to reward other players when

player i plays ŝi so as not to change incentive constraints, while making ŝ more welfare

attractive than s̃.

For the space H take the σ such that x·π(σ) ≥ 0. Since π is continuous, this space

is closed. Suppose that σm ∈ F̂ (zm). It must be that it arises from σm ∈ F (zm) =

F (z), and since σm maximizes w(σ, zm) in F (z) and σ̂ ∈ F (z)

w(σm, z) + λmx · π(σm) ≥ w(σ̂, z) + λmx · π(σ̂)

= w(σ̂, z) ≥ w(σm, z)

where the �nal inequality follows from σm ∈ F (z) and σ̂ ∈ F̂ (z). Hence λmx·π(σm) ≥
0 and λm > 0 implies σm ∈ H.
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Note that this result holds if payo�s and largesse are symmetric and only symmet-

ric equilibria are allowed. Here the perturbation must be chosen to preserve symmetry.

Rather than picking a player and a pure strategy that has a higher probability under

one solution than the other, pick a pure strategy ŝi that has a higher probability for

all players under one common mixed strategy than the other. The perturbation is

then that for each player that plays ŝi all other players are rewarded with a bonus of

1, with the corresponding normalized expected value being subtracted from all player

payo�s. The rest of the proof is unchanged.

5.7. Behavior

At bifurcation points behavior changes abruptly. From Proposition 5.4 this hap-

pens only on a lower dimensional subset of the parameter space. A model is, however,

at best a good idealization. There is no sense in thinking that in reality parameters

fall exactly into a lower dimensional set. Near a bifurcation, at best, behavior can

be described by a probability distribution over some nearby set of parameters. This

means that to a good approximation behavior is described by a point in the convex

hull of the limit points of nearby parameters. I have accordingly drawn the �theo-

retical predictions,� in Figures 2.1 and 4.1, with vertical segments at the bifurcation

points.

There is a second point that is useful in stating (and proving) theorems about solu-

tions sets. Call a subset Z̃ ⊆ Z comprehensive if it is the complement of a (relatively)

closed, lower-dimensional, semi-algebraic subset of Z and F̂ (z) is a single-valued con-

tinuous function on Z̃. From Proposition 5.11 such sets exist if we allow utility

perturbations, and they exist in many examples even without utility perturbations.

When there is a comprehensive Z̃ it is adequate from the point of view of behavior

to describe F̂ (z) on Z̃ where it is a continuous function. From a behavioral point of

view, the bifurcation set should be �lled with the convex hull of limit points of F̂ (z)

6. Reward Games

I continue to consider unitary largesse, that is, I will assume that each player

has only one type. I �rst consider a class of simpli�ed versions of the trust and gift

exchange games, that I shall refer to as reward games. These are 2 × 2 games with

the payo� matrix given below in Table 6.1.
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S R

K E, 0 E, 0
I 0, B r,B − c

Table 6.1: The Reward Game

The payo� parameters in the parameter space Z are restricted to B > c > 0, r >

E > 0, r ≥ c. The interpretation is this. The �rst player has an endowment of E.

They may either K(eep) their endowment or I(nvest) it with player 2. If they keep

the endowment they consume it and player 2 gets nothing. Player 2 may either elect

to R(eciprocate) an investment by returning r at a cost of c or S(el�shly) keep the

entire investment which has a value to them of B. An example of the reward game is

a simpli�ed version of the trust game of Berg, Dickhaut and McCabe (1995). Here

the �rst player has an endowment of E = 10. In this simpli�ed version, they can

either invest all or none. If the investment is made, the value to player 2 is tripled

so that B = 30. If they reciprocate, in this simpli�ed version, they can return only

r = 15 which costs c = 15.

6.1. The Reward Game Paradox

Analyzing Nash equilibrium, the unique best response by 2 to a positive probabil-

ity on I is S and unique best response to S is K, hence the unique Nash equilibrium is

KS with welfare E. This is strictly less than the maximum achievable welfare which

is at IR and is r − c+ B ≥ B. The dilemma is similar to the Prisoner's dilemma in

that there is a unique Nash equilibrium that is welfare sub-optimal, and indeed IR

Pareto dominates IR.

In the laboratory, what is seen is that in fact player 1's sometimes play I and

player 2's sometimes return R. The usual interpretation is that this is some sort of

fairness or reciprocity. Fairness says that since IS is unfair to player 1 player 2 will

return something, and this gives an incentive for player 1 to play I. Reciprocity says

that player 1 playing I is a kind act and should be rewarded by returning something.

By contrast largesse design says that player 2 plays R some of the time both

because it is raises welfare, and because it provides incentives to player 1 to play I

further raising welfare.

6.2. The Solution to the Largesse Design Problem

Denote by σ1
I , σ

2
R the probability that 1 plays I and 2 plays R respectively.
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Proposition 6.1. The set r > c and γ1γ2 > 0 is comprehensive and has three regions.

i. γ2 < c and γ1 ≤ E − γ2r/c then the unique solution to the largesse design

problem is

σ1
I =

γ1c+ γ2r

cE
,

σ2
R =

γ2E

γ1c+ γ2r
,

and

2W = E + (γ1c+ γ2r)
B − E
cE

+ (γ2/c)(r − c).

ii. γ2 < c and γ1 > E − γ2r/c, then the unique solution to the largesse design

problem is σ1
I = 1, σ2

R = γ2/c, and 2W = B + (γ2/c)(r − c).
iii. γ2 ≥ c, then the unique solution to the largesse design problem is σ1

I = σ2
R = 1,

and 2W = B + r − c, so the �rst best is obtained.

Just to emphasize: F̂ (z) is single-valued and continuous on the entire set B > c >

0, r > E > 0, r > c and γ1γ2 > 0 and there are no bifurcations on this set.

Some insight into how largesse design works can be had by considering the case

γ1 = 0. In this case, the �rst player will choose I with positive probability only if

σ2
R ≥ E/r. Take the case where σ2

R = E/r and player 1 is indi�erent. How can player

2 be induced to play R this frequently? Playing R means a loss of c. However, player

2 chooses to be vulnerable to that loss only σ2
R = E/r of the time, and player 1 only

asks them to consider taking the loss only σ1
I of the time. That is, the expected loss

to player 2 is σ1
I (E/r)c and the incentive constraint says only that this expected loss

must be no greater than γ2. If player 1 randomizes onto I su�ciently infrequently

σ1
I (E/r)c ≤ γ2 will be satis�ed, and the solution is to take σ1

I (E/r)c = γ2 (provided

this is no greater than 1). This idea, that reducing the frequency with which a player

is asked to sacri�ce, makes feasible sacri�ces by that player, is fundamental to largesse

design.

A related fact is that the probability of the �rst best outcome IR in cases (i) and

(ii) is σ1
Iσ

2
R = γ2/c, that is, it does not depend on γ1. As γ1 increases in case (i) σ1

I

increases, but σ2
R must decline to maintain the incentive constraint for player two.

Hence, the probability of IS increases, while the probability of IR remains the same.

A �nal and also related observation is that, in the symmetric largesse case in

which γ1 = γ2, the probability of player 2 playing R is σ2
R = E/(c+ r), independent

of largesse. Here again, the strategy of player 1 must adjust so that the largesse



25

constraint for player 2 is satis�ed.

Proof. The incentive constraint for player 1 can be written as the expected loss from

I being no greater than γ1

Eσ1
I − σ1

Iσ
2
Rr ≤ γ1,

and that for player 2 as the expected loss from R being no greater than γ2

σ1
Iσ

2
Rc ≤ γ2.

Consider the second player constraint σ1
Iσ

2
Rc ≤ γ2. If this is strictly satis�ed then

σ2
R can be increased resulting in a weak welfare improvement, while additional slack

is weakly added to the �rst constraint. That is, more R makes I more attractive to

player 1. Hence, there is a solution to the largesse design problem in which either

σ1
Iσ

2
Rc = γ2 or σ2

R = 1.

Take �rst the �easy case,� σ2
R = 1. Then the �rst constraint is Eσ1

I − σ1
Ir ≤ γ1.

As E − r < 0 this is always satis�ed, and as σ1
I strictly increases welfare with σ2

R = 1

it must be that σ1
I = 1. However, the second constraint is satis�ed only when c ≤ γ2.

Moreover, if this is the case then indeed IR is a �rst-best equilibrium. This is case

(iii).

Suppose, then, that the second constraint does bind so that σ1
Iσ

2
Rc = γ2. Then

the �rst constraint can be written as

Eσ1
I − (γ2/c)r ≤ γ1.

Welfare is given by

2W = E + σ1
I (B − E) + (γ2/c)(r − c).

This is increasing in σ1
I , so either Eσ1

I − (γ2/c)r = γ1, or σ1
I = 1. The former case is

γ1 ≤ E − γ2r/c, that is, case (i), and the latter case (ii).

7. Public Goods

I continue to examine unitary largesse. In 2 × 2 games there is no issue about

where to spend largesse, but only how much can be achieved by spending it. I now

turn to a 3 × 3 class of games in which a decision has to be made on which of the
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two sub-optimal actions the largesse should be used for. Speci�cally, I consider a

symmetric two player public goods game in which players can choose to free ride, F ,

contribute to a public good, C, or both contribute to the public good and punish free

riders, P . I continue to examine the unitary case, and now also make the obvious

symmetry assumption that γ1 = γ2 = γ.

Contributing to the public good has a cost of v + c where v > c > 0, while

contribute to the public good and punishing free riders has a higher v + c+ d where

d > 0. You can think of d as a simpli�ed model of costs that arise from trembling.

The public good, if produced, it is worth v to each player. This is additive, so if

both produce the public good, each gets 2v from public good output. If a free rider

is punished, they su�er a cost of p > c, so that it is better to contribute than to free

ride if the opponent is punishing. To avoid an uninteresting case, I assume also that

p > d.

7.1. Dominance Solvability

Suppose that γ = 0. Then C strictly dominates P . Once P is eliminated F

strictly dominates C. Hence FF is the unique solution of iterated strict dominance.

In the laboratory, what is seen is that in fact free riders are sometimes pun-

ished. Once again, the usual interpretation is that this is some sort of fairness or

reciprocity. Fairness free riding is unfair, and fairness can be restored through pun-

ishment. Reciprocity says that free rising is an unkind act and should be reciprocated

by punishment.

By contrast largesse design says that punishment is an e�ective way to provide

incentives for socially desirable contributions.

7.2. Overview of the Solution

The big picture is that at γ = 0 there are only free-riders. As γ is increased from

zero, initially some free riders use their largesse to produce, and welfare increases

linearly. If the cost of punishment is low in the sense that d/(p − d) < (v − c)/c

then there is a bifurcation, a value of γ = (d/p)c, where a new type of equilibrium

is possible. In this equilibrium there are no free-riders, but punishers provide the

incentives for production, and largesse is used to compensate punishers for the cost

of punishment. Welfare jumps up discontinuously.

Bifurcation, the emergence of a new type of equilibrium, is a key feature of models

like this. There are two ways in which largesse can be �spent.� It can be used directly
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to compensate for the cost of production or it can be used indirectly to compensate

for the providing incentives for others. Once enough largesse is available, if the cost

of punishment is not too high, it is better to compensate for providing incentives.

As largesse is increased further, past the bifurcation point, less incentive is needed

for producers, and the number of punishers falls, the number of producers increases,

and welfare increases, until, when there is enough largesse, γ = c, the �rst best of

v − c is attained, and production σ1
C = 1, takes place entirely out of kindness.

7.3. Solution of the Largesse Design Problem

Proposition 7.1. There is a comprehensive set consisting of three di�erent regions

with qualitatively di�erent solutions:

i. if γ < c and either γ < dc/p or d/(p− d) ≥ (v − c)/c then σ1
P = 0, σ2

C = γ/c,

and welfare

W = (γ/c)(v − c).

ii. if dc/p ≤ γ < c and d/(p− d) ≤ (v − c)/c then σ1
C + σ1

P = 1 (no free riders),

σ1
P =

c− γ
p− d

,

and welfare

W = (v − c)− c− γ
p− d

d.

iii. if γ ≥ c then σ1
C = 1 and the solution is �rst best with welfare W = v − c.

In particular, if d/(p− d) < (v− c)/c welfare jumps up at γ = dc/p, that is, there

is a welfare bifurcation. At this point it becomes possible to entice all the free-riders

to contribute and with a low cost of punishment, d/(p− d) < (v− c)/c, it is desirable
to do so.

Proof. As usual it is useful to dispose of the large largesse, �rst best, case (iii) �rst.

If γ < c then in the solution the constraint must bind and σ1
C < 1, while if γ ≥ c

then the solution of the largesse design problem is σ1
C = 1.

Suppose that the constraint does not bind. In this case shifting a small amount

of weight to C increases welfare without violating the constraint. If γ < c and the

constraint does not bind then σ1
C = 1. This implies that the best response is F , with

a gain of c over C. Hence, if γ < c, the incentive constraint is violated. On the other
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hand, if γ ≥ c then σ1
C = 1 satis�es the incentive constraint, and, as this is the unique

�rst best, it must be the solution.

We may now assume that γ < c and that the constraint binds with σ1
C < 1. Since

P is never a best response, this implies that the best response is F . Observe that

c and c + d is what is lost by C and P respectively compared to F if there is no

punishment, but that both avoid the punishment cost of σ1
Pp. Hence the incentive

constraint is

(σ1
C + σ1

P )c+ σ1
Pd− (σ1

C + σ1
P )σ1

Pp = γ.

The expected social surplus from output of the public good is σ1
C(v−c)+σ1

P (v−c−d),

while the expected cost of punishment is σ1(F )σ1
Pp, so welfare is given by

W = (σ1
C + σ1

P )(v − c)− σ1
Pd− (1− σ1

C − σ1
P )σ1

Pp.

The incentive constraint can be rewritten in the convenient form

(σ1
C + σ1

P − d/p)(c− σ1
Pp) = γ − dc/p.

This highlights the semi-algebraic nature of the constraint discussed in Section 5.1.

In particular there are two distinct possibilities. If c − σ1
Pp = 0 then it must be

γ = dc/p, so this is a candidate for a bifurcation point.

Suppose, indeed, that σ1
P = c/p and γ = dc/p. In this case any σ1

P ≤ σ1
C + σ1

P ≤ 1

is feasible. Increasing σ1
C + σ1

P holding �xed σ1
P preserves the incentive constraint

while reducing the number of free-riders: this unambiguously increases welfare, so it

must be in this case that σ1
C + σ1

P = 1. Welfare is v − c− dc/p.
If σ1

P > c/p then C is a best response, which is already ruled out, so the other

case is σ1
P < c/p, in which case we can solve

σ1
C + σ1

P − d/p =
γ − dc/p
c− σ1

Pp
.

If γ < dc/p then σ1
C+σ1

P is a decreasing function of σ1
P meaning that as shift players

from C to P the number of free-riders actually increases, so this is unambiguously bad

for welfare. Hence σ1
P = 0 and we can solve the incentive constraint to �nd σ1

C = γ/c.

If γ ≥ dc/p then σ1
C+σ1

P is an non-decreasing function of σ1
P . We plug the solution
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of the incentive constraint into the objective function to �nd

W =
γ − σ1

Pd

c− σ1
Pp
v − γ − σ1

Pp.

The �rst derivative is

dW

dσ1
P

=

(
−d (c− σ1

Pp)

(c− σ1
Pp)

2 +
(γ − σ1

Pd) p

(c− σ1
Pp)

2

)
v − p

=

(
γp− dc

(c− σ1
Pp)

2

)
v − p

The second derivative is

d2W

d(σ1
P )2

= 2

(
γp− dc

(c− σ1
Pp)

3

)
pv.

Since γ ≥ dc/p and c− σ1
Pp < 0 the function is weakly convex. Hence we must check

the endpoints to see where the welfare maximum is.

Since σ1
C + σ1

P is an non-decreasing function of σ1
P the endpoints are where σ1

C +

σ1
P = 1 and where σ1

P = 0. In the former case

σ1
P =

c− γ
p− d

,

and in the latter σ1
C + σ1

P = γ/c. Plugging into welfare gives

WP = (v − c)− c− γ
p− d

d

in the former case and

WC = (γ/c)(v − c).

in the latter. The condition WP > WC can be written as

d

p− d
<
v − c
c

,

meaning the cost of punishment relative to the size of punishment is not too great.
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8. Leveraging Reputation

Commitment plays a crucial role in reputational models. That is, while, in a sense,

the goal of these models is to show how reputation can substitute for commitment,

underlying it is a small probability that some players are actually committed. This low

probability of commitment is then bootstrapped to show that non-committed players

never-the-less act committed to keep a good reputation. In the context of largesse

design, players can commit, but they can incur only limited losses from doing so. My

goal here is to explain how a few committed players with limited and possibly very

small largesse can act like �behavioral types� in reputational models to provide good

solutions to the largesse design problem.

A simple setting for studying reputation are the reward games of Section 6, with

payo�s shown again below in Table 8.1, where recall that B > c > 0, r > E > 0 and

now r > c.

S R

K E, 0 E, 0
I 0, B r,B − c

Table 8.1: The Reward Game

Notice that player 2 would like to commit to R to force the �rst best outcome

IR. However, while limited commitment is available due to largesse, as discussed in

Section 6, I want to examine what happens when the game is played T times between

a patient player 2 who receives the time average payo� and a sequence of short-run

player 1's. I assume that every player 1 has the same distribution of largesse. The

main result is then this:

Proposition 8.1. Fix any largesse distribution such that for some τ both φ2
τ > 0

and γ2τ > 0. Let WT denote the solution to the largesse design problem. Then

limT→∞WT → r +B − c, the �rst best.

Proof. Note that certainly WT ≤ r +B − c.
By Proposition 5.8 it su�ces to prove this in the special case where player 1 is

sel�sh and player 2 is either type τ or sel�sh. That is, there is a single type of

player 1 with γ1 = 0 and two types of player 2, one with φ2
τ , γ

2
τ and the other with

φ2
σ = (1− φ2

τ ), γ
2
σ = 0.



31

Rather than trying to compute the solution to the largesse design problem, I use

the technique developed Fudenberg and Levine (1989) for analyzing reputational

models to get a lower bound on welfare. This is done by showing that type τ can �nd

a largesse feasible strategy that gives nearly �rst best welfare, when the sel�sh players

all best respond. The idea is similar to that used in the reputational literature, that

is, type τ (with high probability) forever plays the �Stackelberg� action of R. From

Fudenberg and Levine (1989) this implies limT→∞WT → r + B − c. However, it

is necessary to show that this strategy also satis�es the largesse constraint. This

requires an upper as well as the usual lower bound on the payo�s of the �rational

type,� here the sel�sh type of player 2.

As indicated, type τ with high probability plays R always. In addition, however,

with positive probability type τ also plays each strategy of the form, play R until

t then play S. The latter part of type τ 's strategy makes it easy to get an upper

bound on the payo� of the sel�sh type of player 2. Speci�cally, it forces the short-run

players, after observing S,to conclude either that they face a sel�sh type or a type

committed to subsequently playing S. Hence, it is a Nash equilibrium for the sel�sh

player always to play S and the short-run player always to play K after observing S.

With this short-run player strategy, the sel�sh type of player 2 must play R, except,

possibly, for some �xed number of periods near the end of the game, where they

switch to S.

Since payo� is time average, the loss to type τ playing R during the �nal periods

goes to zero as T →∞, so the largesse constraint will be satis�ed.

I want to emphasize that the ex ante nature of the largesse constraint is here

again crucial. That is, type τ of player 2 has a limited amount of largesse, but they

can spend it in whatever periods they choose. Hence, they are free to lose in a few

periods, provided they do not lose in too many. This is closely connected to way in

which Radner (1980) exploits ε-equilibrium to generate cooperation in the �nitely

repeated prisoner's dilemma game.

9. Conclusion

The largesse design problem is economically relevant, but involves maximizing a

function that may not be concave over a set that need not be convex, and which need

not be lower-hemi continuous in parameters. Despite this, solutions exist and are
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well behaved, generically being single valued and continuous. In simple examples, it

is not di�cult to characterize solution sets analytically.

From an economic perspective, what these examples show, is that largesse design

is about being opportunistic. It is about using low cost punishments, rewards, and

reputation to encourage other players to pro-social behavior, rather than blindly

acting in a pro-social way. The theory of largesse design provides a sensible and

tractable alternative to psychological theories of preferences, for explaining non-sel�sh

behavior inside and outside the laboratory.
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