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ABSTRACT OF DISSERTATION

ESSAYS ON SOCIAL LEARNING
AND OPTIMAL COMMITTEE SIZE

by

Sawoong Kang
Doctor of Philosophy in Economics
University of California. Los Angeles. 1996

Professor David K. Levine, Chair

This dissertation consists of two independent papers which address problems of social
learning and optimal committee size.

Chapter 2 analyzes a heterogeneous population in which selfish players and fair
players are spatially distributed. and they are randomly and repeatedly matched to
play a prisoner’s dilemma. Players are assumed to behave in a myopic manner. By
introducing the random experimentation of fair players. it is shown that the system
described by a Markov process converges to a best possible equilibrium in the long
run. The long-run equilibrium is shown to be unique for a population with the
distribution of players and matching rule fixed. Simulation result shows that the
structure of interactions affects the long-run cooperation rate. The model is applied
to collusion in a monopolistically competitive industry.

Chapter 3 provides a theory for the optimal size of committee, by examining the

tradeoff between the sluggishness in arriving at a group decision versus the greater



accuracy of decision making due to the pooling of information. We consider a decision
about whether to make an investment that has an uncertain value. about which
each individual has an independent signal. By assuming that potential committee
members are available to meet only at random times, we model the cost of delay due to
scheduling problem. Within the context of individualized information and scheduling.
we analyze the optimal size of a standing committee and an ad hoc committee. We

also consider the case in which a decision maker is facing a sequence of similar decision

making problems.
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Chapter 1

Overview



Chapter 2 investigates how the cooperation can evolve in a heterogeneous population
in which selfish plavers and fair players locally interact. and how the structure of inter-
actions can affect the efficiency of the long-run equilibrium outcome. For this purpose.
we consider an economy in which two types of players are spatially distributed. and
they are repeatedly and randomly matched to play a prisoner’s dilemma. We assume
that a player possesses knowledge about his neighbors past actions but their type
cannot be distinguished. Players optimize myopically with a static belief so that they
choose one-shot optimal action in response to their neighbors actions in the previ-
ous period. In order to minimize the inefficiency of possibly being locked in a bad
equilibrium due to their myopic behavior. fair players make random experiments in
each period. in which they cooperate with a small probability when their myopic
best response requires them to defect. In this setting. the dynamics of the game can
be described by a Markov process. We analyze the limit behavior of the system as
the probability of experimentation goes to zero. The main theorem shows that for
a given distribution of players and a matching rule. there exists a unique long-run
equilibrium. By performing simulation on the average long-run cooperation rate un-
der various matching rules. we found two interesting results. First. if the population
is highly selfish. or the matching rule is quite local. then the neighborhood size has
a negative effect on the long-run cooperation rate. Second. the larger the population
size. the lower the cooperation rate. The model is also applied to the implicit col-
lusion in a monopolistically competitive industry, where firms compete with only a
small number of rival firms.

Chapter 3 provides a theory for the optimal size of a committee. Our focus 1s
on the tradeoff between the sluggishness in arriving at a group decision versus the
greater accuracy of decision making due to the pooling of information. For this

purpose. we consider a decision whether to make an investment. The investment has



an uncertain value. and each individual has an independent signal about the value
of the investment. We model the cost of delay as simply the time cost of forgone
profit. By assuming that potential committee members are available to meet only at
random times, we focus on the scheduling cost: the larger the committee, the more
difficult it will be to schedule a meeting at which all members will be present. Within
the context of individualized information and scheduling, we analyze the optimal
size of a standing committee and an adhoc committee. Our model reflects our basic
intuition about committees: the greater the cost of time delay and the less diverse the
information. the smaller the size of the optimal committee. We also consider the case

in which a decision maker is facing a sequence of similar decision making problems.



Chapter 2

Cooperation through
Experimentation and Learning in a

Heterogeneous Population



2.1 Introduction

The prisoner’s dilemma is a well-known game in which players” mutual cooperation
is desirable but difficult to enforce due to the rational behavior of selfish plavers.
Selfishness and rationality are the two cornerstones on which conventional economic
models have been established. However, it has been pointed out in the recent liter-
ature that many phenomena cannot be easily formulated as the outcome of rational
choices by selfish agents. For example, in many laboratory experiments concerning
the contribution to a public gopod—which can be characterized as a one-shot prisoner’s
dilemma—plavers contribute their resources on average nearly 40-60% of the socially
optimal level. ! Clearly. this result is inconsistent with the prediction of standard
game theory that prescribes zero contribution as the dominant strategy.

Since these experimental studies seem to imply that some players make contribu-
tions while others free ride, one natural theoretical extension is to take into account
the fact that in many situations which are often modeled as a prisoner’s dilemma.
there exist a number of players who are not as “greedy” as typical selfish players.
From this cause. we would like to examine a heterogeneous population in which self-
ish players and fair players interact. Fair players are characterized as suffering from
guilty feeling when they free ride, whereas selfish players enjoy the material gain from
exploiting other players. 2 Thus, fair players seek to coordinate with other plavers.
while selfish plavers always defect.

Furthermore, observe that in a very large economy, agents tend to interact with
only a relatively small subset of the whole population, whom we call neighbors. Gen-

erally, the set of neighbors of a particular agent partially overlaps with one another

1Dawes and Thaler (19§8) provide a short survey of these public good experiments. For a
comprehensive survey, see Ledyard (1993).

2Fairness has been modeled in various ways. For example, see Hirshleifer (1985, 1993) and Rabin
(1993).
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so that all agents are directly or indirectly linked with each other. The size of the
neighborhood depends upon the characteristics of the game being played and the
level of existing technology such as transportation or communication. For example.
advanced means of transportation allow people to interact with a larger number of
other people.

The object of this paper is to study how the cooperation can evolve in a hetero-
geneous population in which selfish players and fair players locally interact. 3 and
how the structure of interactions can affect the efficiency of the long-run equilibrium
outcome. For this purpose. we consider an economy in which two types of plavers
are spatially distributed, and they are repeatedly and randomly matched to play a
prisoner’s dilemma. The stage game is complicated with incomplete information so
that the pavofl matrix depends on the types of matched pair. It is assumed that a
plaver can remember his neighbors past actions but cannot distinguish their type.

Axelrod (1984) addressed the question of how the cooperation can evolve in a
population consisting only of selfish players. He set up the problem as an indefinitely
repeated prisoner’s dilemma, and show that if players are sufficiently patient. then
cooperation can evolve from small clusters of players who use TIT FOR TAT strategy.
TFT strategy cooperates on the first move and then does whatever the opponent did
on the preceding move. In his computer tournaments, Axelrod found that TFT was
the best strategy of all strategies submitted for a repeated prisoner’s dilemma. 4
Axelrod focused on how the long-run consideration of patient selfish players can lead
them to cooperate on the basis of reciprocity. In contrast, we focus on the process
by which myopic fair players get to cooperate among themselves in the face of selfish

plavers who never cooperate. In Axelrod’s framework, each player is assumed to

3By using Ising model, Ellickson (1990) and Blume (1993) study local interactions in a homoge-
neous population.

'For a short report of this tournament result. see Axelrod and Hamilton (1981).



recognize the other player in his interactions and to remember how the two of them
have interacted. Thus plavers can base their decision on the history of the particular
interaction. In our analvsis, however, a player cannot recognize his opponent except
knowing that he belongs to his neighborhood. Hence, the average behavior of his
neighbors in the past is taken into account by a player’s strategy.

Kandori, Mailath and Rob (1993) analyzed the long-run behavior in a large pop-
ulation in which players are repeatedly and randomly matched to play a coordination
game. They showed that evolutionary forces created by mutations and myopic be-
havior by plavers lead them to coordinate to a risk-dominant equilibrium in the long
run. Since fair plavers in our model are analogous to players in a coordination game
in the sense that thev want to coordinate with g_théfi'j)las'ers. we can employ the mod-
eling strategv of KMR. When plavers globally interact in a fairly large population as
assumed in KMR. however. it will take too long for the evolutionary forces to be felt.
Then the analvsis of long-run equilibrium is not relevant for the prediction of a real
outcome. Ellison (19-93) shows that if the matching process is local rather than global.
the system can quickly converge to the long-run equilibrium. In our heterogeneous
population game. the structure of interactions affects not only the rate of convergence
to the limit. but also the limit itself.

In principle. when a player makes a decision in each period. he has to take into
account the effect of todav's decision on the future payoff through the influence on
the future actions of his neighbors. For simplicity, however. we assume that the
complexity of the problem forces players to optimize myopically, and that they naively
expect to see the same profile of neighbors’ actions as one in the previous period. Then
plavers will choose one-shot optimal action in response to their neighbors actions in
the previous period. When players employ the myopic best response such as this.

there exist multiple Nash equilibria. and thus a wide range of cooperation rates can
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be realized as outcomes. For any mix of two types, for example. the worst outcome
in which everyone defects is a Nash equilibrium. There also exist other equilibrium
outcomes in which some of fair plavers cooperate. We can call the best of the set
of outcomes a best possible equilibrium, so that in a best possible equilibrium the
maximum amount of cooperation among fair players is achieved.

In order to single out the most plausible outcome in the long run, we will focus on
one desirable characteristic of the fair players. Recognizing that current bad outcome
is mainly due to coordination failure among themselves, some fair players attempt to
act as leaders in solving the coordination problem. The intentional efforts of leaders
can be modeled by assuming that in each period all fair players make random exper-
iments. in which they cooperate with a small probability even when doing so is not
myvopically optimal. These leading cooperations are allowed to be withdrawn at any
time if the Jeaders are not satisfied with a persistent non-cooperative neighborhood.
Random experimentation in our model is different from the mutations in the previous
literature on two aspects. First, we introduce random experimentation to model fair
players’ intentional efforts to solve coordination failure amongst themselves. while
mutations in KMR and Ellison are interpreted as mistakes by players. Second. ex-
perimentation in our model is only one way of moving from defection to cooperation.
while KMR and Ellison’s mutations allow two-way randomization between two ac-
tions. Then some of fair players attempt to cooperate even in a completely defective
environment. Clusters of these leading cooperators may induce other fair players to
cooperate through their learning and myopic optimization, so that they can locally
succeed in fostering cooperate environment. Therefore, we can expect that in the
long run the economy would eventually evolve to a best possible equilibrium.

In this setting, the dynamics of the game can be described by a Markov process.

We analyze the limit behavior of the system as the probability of experimentation



goes to zero. We can show that in the long run the economy converges to the best pos-
sible equilibrium, in which active- fair players cooperate and selfish and discouraged-
fair players defect: active-fair (discouraged-fair) players have potentially cooperative
(defective) neighborhoods. Since the distribution of players certainly affects the co-
operation rate, we need to look at the average cooperation rate for a given set of other
parameter values. The average cooperation rate in the long-run equilibrium varies
according to the proportion of selfish players, the size of neighborhoods, the size of
population and the degree of overlap in the interaction structure.

For completeness, 1 carried out a number of computer simulations. In these sim-
ulations. 1 imposed a restriction on the payoff matrix. so that a fair plaver’s myopic
best response is to follow the majority action of his neighbors in the previous period.
Two interesting results were found. First. if the population is highly selfish. or the
matching rule is quite local. then the neighborhood size has a negative effect on the
long-run cooperation rate. Second. the larger the population size. the lower the co-
operation rate. These two effects can be combined to explain why people living in a
large and crowded city are relatively less cooperative.

The simulation results have an important implication for the collusion in various
market structures. In the oligopoly industry. firms tend to interact globally. Ou
the other hand, monopolistically competitive firms tend to compete with a small
number of rival firms. where the number of rival firms for each firm is determined
bv substitutability among products. In the global interaction case. collusion among
fair firms will be either perfect success or complete failure, depending only on the
composition of two types in the industry. However, in the local interaction case, the
degree of collusion will be in between these two extremes. where the average price
lovel is determined by the number of rival firms as well as the proportion of each tvpe

m the industry.



The paper is organized as follows. Section 2 describes the formal model. in which
pavoff matrices, matching rules, myopic best response, and random experimentation
are detailed. In Section 3, we prove the main theorem concerning the existence
of a unique long-run equilibrium. Section 4 investigates the implication of various
matching rules for the long-run equilibrium by using simulation. Finally, Section 5
applies the model to collusion in a monopolistically competitive industry and Section

6 concludes.

2.2 The Formal Model

Consider a large population consisting of N players. letting N also represent the set
of plavers. Each player is one of two types: selfish (S) or fair (F). S and F will
also be used to denote the number of people in each type. Notice that N=SUF
and SN F = (. The proportion of selfish players is denoted by m = S/N. Players
are randomly and repeatedly matched for play in a 2-person Prisoner’s Dilemma.
Time is discrete, indexed by t = 1.2.3..... In each period. player i chooses one of
two possible actions a;; € {C, D}, where C and D denote “cooperate” and “defect”
respectively. Depending on the types of the matched pair, one of three payoff matrices
becomes relevant. In Table 2.1, these payoffs are tabulated. where I have assumed
that # > 0,0 > 0, and ¢ > y > 0. [ measures the loss from being exploited and y
measures the pecuniary gain from free riding; however. fair players also suffer from
“guilty” feeling of g when they cheat other people.

Players interact only with a subset of the population. To be concrete, suppose
that players are uniformly distributed on a circle or torus of N sites and are not

allowed to move. ® Interactions on a circle (torus) can be thought of as one (two)-

5Schelling (1971) analyzes the segregation phenomena when the locally interacting agents are
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dimensional. ® Let us svmbolize local interaction on a circle by C#. where # denotes
the number of neighbors; for example. C4 stands for the local interaction on a circle
with 4 neighbors. Likewise, T# denotes a local matching on a torus with # neighbors.
Figures 2.1 and 2.2 illustrate some examples of various interaction structures. Even
when the number of neighbors are equal, the degree of overlap can be very different
depending on the dimension of the interaction structure. Some interactions have a
highly overlapping structure in the sense that a neighbor of an agent’s neighbor is
likely to be also a neighbor. In other structures, the neighborhoods of two distinct
agents may only slightly overlap or in fact are completely disjoint. For example, the
probability of a neighbor of an agent’s neighbor also being a neighbor is 1/2 in (*4
but 0 in T4.

In every period. each player is randomly matched with one of his closest 2A neigh-
bors with equal probability, where k is a positive integer smaller than N/2. Then the

probability that player i meets j in a given period. 7;;. is defined by: *

de ifi—j=%1.22 - &k (mod N).

Ti; =
0  otherwise.
If we denote the dimension of the interaction structure by d. then M = (2k, d) defines
a matching rule.
For convenience. let us redefine the set of possible actions as A = {1.0}. where
C has been replaced by 1 and D by 0. Clearly then, the expected payoff to player

in period t can be written as a function of his own action and his neighbors’ actions.

allowed to move. And Ely (1995) extends the model of KMR (1993) and Ellison (1993) to the case
when players can choose the neighborhoods to which they belong.

6A circle can be thought of as simply a line with both ends connected. Similarly, if unfolded. a
torus becomes a square.

TWhen we consider two dimensional matching, we might have to use a coordinate (i, j) rather
than i to locate a player. For notational simplicity, however, we focus on one dimensional matching.
All of our results still apply to the two dimensional matching cases.
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Let us describe the spatial distribution of players’ types by an N x 1 vector.
e® € {0,1}", where 0 denotes a selfish type and 1 a fair type. Now. we can define a

heterogeneous population game, G as follows.

Definition 2.2.1 G = (E, M.$) is a repeated game played by a heterogeneous pop-
ulation E = (N.m, €%, with the matching rule M = (2k.d) and the payoffs 0 =

(z.y.9.1).

We assume that a player can observe his neighbors past actions but cannot dis-
tinguish their type. In principle, players wish to maximize the life-time payoff.
V(t) = Yo, 8° 'ui,. where 3 is a discount factor. In other words. when a playver
makes a decision in each period. he should take into account the effect of todayv's
decision on the future payofl through the influence on the future actions of his neigh-
bors. Since the future actions of his neighbors depend on their other neighbors’
actions as well. however. it is difficult for a player to form rational belief as to how
his neighbor will respond to his today’s action. Therefore. we assume that playvers
believe that their current actions do not affect their neighbors future actions. i.e..
Eda_is | ai = 0] = Eila_is | aq = 1] for all s > t. With this belief. playvers be-
have myopically. Then a myopic player does not care about the future and simply
chooses an action to maximize his current period expected payoff, which depends
on his neighbors’ current period actions. 8 We also assume that players have static

belief that their neighbors will stick to the same actions as in the previous period.

8Ellison (1995) explores the question of when the assumption of myopia can be justified in a large
population. In contrast to our model. he assumes that each player knows only about the matches
in which he has been involved.



ie.. Eifla_i | a_;_;] = a-;y—1. Then plavers’ optimal actions can be described by the

following best response function, BR, : a1 = (aji—1,@2t—15- - -ANi—1) = a;d
0 ifz€ 5.
. —_ . . 1 k i
BRi(aj-1) = 0 ifi€ Fand 5 G=1 Gitjt-1 < g_;_‘_l,

op - 1 k o 1
1 if7i€e Fand 5 ijl Qitjt-1 2 o470

In other words. selfish players always choose to defect no matter how other people
behave. The optimal action of a fair player, however, depends on what proportion of
his neighbors cooperated in the previous period, i.e., he will cooperate if and only if
the proportion of cooperative neighbors is not less than a critical level. Now. using

this best response function, we can define a Nash eguilibrium of the game.

Definition 2.2.2 For a given game. G. an action profile a = (a;.az.- .ax) is a

Nash equilibrium if and only if BRi(a) = a; for all1e€ N.

Since fair players’ best responses depend on how other people behave. there exist
multiple Nash equilibria from the worst one of complete defection. ALL D. to a best
possible equilibrium. in which fair players achieve the maximum level of cooperation
among themselves. Of course. the level of cooperation in the best possible equilibrium
varies with the parameters of the model. such as the configuration of players in the
population and the matching rule. 10

We would like to know whether the economy can settle at the best possible equilib-
rium in the long run. Suppose that initially the economy is at the worst equilibrium
in which both selfish players and fair players defect. Selfish players, being greedy.
can be said to be deserving the low level of utility from ALL D. For fair players.

however, the Pareto inferior outcome should be attributed to the lack of coordination

9Here. we assume that when they are indifferent. fair players cooperate.
10From now on. by the configuration of players we mean the spatial distribution of players. el

13



among themselves as well as to the fear of being exploited by selfish plavers. Once
coordination failure is recognized as the main reason for a bad outcome. some fair
plavers are motivated to play a role in mobilizing incentives to improve the current
bad state. Then they will attempt to cooperate even in a non-cooperative environ-
ment. Clusters of these leaders may induce other fair players to cooperate through
their myopic best response and learning about the changing environment. In some
neighborhoods, these coordination efforts may be discouraged due to a large fraction
of selfish players relative to fair leaders. In the long run, however, the economy may
eventually move from a non- cooperative state to the best possible equilibrium.

To capture this idea. let us assume that in each period fair players. in the hope
of minimizing the inefficiency of possibly being locked in a bad equilibrium due to
their myopic behavior. choose to cooperate with probability ¢. even when their best
response calls for defection. !' On the other hand. selfish plavers are not allowed
to make any experimentation because here we introduce random experimentation
to model intentional efforts rather than mistakes. Then the best response function

should be replaced by a behavior rule, B; : -y = a;;, which is given by:

0 if7€8S.

el

By ) with probabilty (1 —¢) if 7 € F and 217 Zle itjr-1 < ;1;:{
da_1) = l
1 with probabilty € if i € F and 5 35 aizjio1 < ;oopy

o k
1 ifi€ Fand ;3 Gizjio1 2 ;Ti?ﬁ'

Although all fair players make random efforts to improve the outcome. not all of
themn will be successful. Intuitively, we expect that those who interact with a relatively

fair neighborhood will be able to succeed in fostering a cooperative neighborhood.

while those who interact with a relatively selfish neighborhood are unable to succeed.

”We assume that this experimentation is reversible in that players are allowed to go back to
defection whenever their experimental cooperation is not immediately matched by sufficient number
of neighbors.

14



In order to make a clear distinction between these two types of fair players according
to the quality of their neighborhoods, we introduce the notion of a discouragement

operator D.

Definition 2.2.3 Discouragement operator, D = (D, Dy, - - .Dn) is defined by:

0 if € = 0
fe: e ) = . — 1k R S
Dt(e‘n 6—1) - 0 Zf € = 1 and 2% Zj:l €itj < g-y+!°
P I N A
1 Zf €; = 1 and 2% j=1 €itj Z g—y+l°

Obviously, there exists a unique limit

e*(°) = lim D(%).

n—o00

Using this limit, we can divide fair players into two categories.

Definition 2.2.4 A fair player i is called an active-fair player if € = 1 and a

discouraged- fair player if e = 0.

In other words. fair players become discouraged when they are surrounded by
fairly many selfish players or discouraged-fair players. Notice that whether a fair
plaver is discouraged depends not only on the types of their neighbors but the types

of their neighbors’ neighbors and their neighbors and so on.

2.3 Characterization of the Long-Run Equilibrium

In order to analyze the dynamics of the system, let us define a state of an economy as a
profile of actions of players. Then the state space can be represented by AN = {0,1}".
Although the total number of possible states is 9N along the equilibrium path at most

9F states will be observed because selfish players have a dominant strategy and are

15



not allowed to make any mistakes or experimentation. In order to give a svstematic

order to these 2F states. we introduce a lezicographic ordering.

Definition 2.3.1 For any two states (a.b). in which all selfish players defect. we
define a lexicographic ordering. > as follows.

a > b if and only if one of the following conditions holds.

(1) K, aie; > Lol biel

(1) DIy el = DL, biei, and Ty 00> Tia b

(1) SF ase; = T8, biel, Ty 0= T b and UL, a2 > TL, 62

For each state. we first count how many active-fair players cooperate and then
count how many discouraged-fair players cooperate. For those states which cannot
be distinguished by these two numbers, we give a particular order by using the plaver
numbers. Based on this ordering. we can assign a number to each state like 1 to the
state (0.0.---.0) and n = 2F to the state in which all fair players cooperate. Then
the state space can be redefined by Z = {1.2,--- .n}. In the theorem below. we will
show that active-fair players cooperate and discouraged-fair players and selfish players
defect in the long-run equilibrium. For convenience. let n* be a number assigned by
the lexicographic ordering to a state in which all active-fair players cooperate and all
discouraged-fair and selfish players defect. Clearly. the value of n= depends on the
parameters of the game, as € does.

On the modified state space, Z = {1,2.--- .n}, we can define transition proba-

bilities as follows:
pi;(€) = Problzi41 = j | zy = 1] for any z € Z and € > 0.

By using the lexicographic ordering in counting the states. we get some nice properties

of p;;(€).
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Lemma 1 (a)p;(e) =0 for j <n™ <1,
(0) Y-l pisle) > 0 Jor e < n,

Proof
(a) In states ¢ > n*, all active-fair players cooperate. but in states j < n”. some
active-fair players defect. As long as all active-fair players cooperate, their behavior
rule tells them to cooperate. regardless of the value of .
(b) For a given state ¢ < n”, we can always find a state j(n* < 7 < n) in which
all active-fair players cooperate, and all discouraged-fair players choose myopic best
responses to the state i. Then for these i and j,pi;(€) > 0 due to the fair players’

random experiments. ]

Lemma 2 (a)lim, sopii(e) =1 if 1 =n".
(b)lim_opiile) =0 tf 1 > n™.

Proof
Since n~ is the best response to itself. (a) holds. In states 7 > n”, some discouraged-
fair plavers are cooperating. Then. some of them will change their actions to defection
in the next period. Therefore, the same state cannot be repeated in the following pe-

riod. which implies (b). [ ]

Due to the behavior rule derived from myopic best response and random exper-
imentation. the dynamics of the game can be described by a Markov process. Now.

we introduce the notion of stationary distribution on a simplex A = {u € RL |
Z?:] Hi = l}
Definition 2.3.2 u(e) is a stationary distribution if and only if w(e) = ple)Plci.

where P(€) is an n z n transition probability matriz.
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It can be easily shown that there is a unique stationary distribution for our P(¢].
which satisfies Lemma 1. We are interested in the long-run behavior of the game
when the probability of random experimentation is small. To be precise, let us define

the limit distribution and the set of long run equilibria.

Definition 2.3.3 The limit distribution p~ is defined by

p* = limeou(e).

Definition 2.3.4 The set of long run equilibria is defined as
LRE(y)={i € Z|ur > 0}.

Now. we can show the following theorem.

Theorem 1 For a given heterogeneous population game. G. there exists a unique
long-run equilibrium in which all active-fair players cooperate and all discouraged-fair

and selfish players defect. i.€..
lim Lopne(€) = 1.

Before we prove Theorem 1. it is useful to introduce two kinds of graphs defined
on a state space Z = {1.2.....n}. '? First. a z-tree h is defined as a directed
graph defined on Z such that each state except = has a unique successor. and that
there are no closed loops. The set of z-trees are denoted by H.. Now. for each :-
tree, calculate the product of transition probabilities along the tree, and then take
the summation of the products for all z-trees. Then this sum will be denoted by

: = Y nen, I (imsjyen Pij- Second. for a given state z, define a digraph on Z such that
each state ¢ has a unique successor, j # ¢, and that there is a unique closed loop.

containing state z. The set of these graphs is denoted by G.. For example. Figure

1215, characterizing the limit distribution, 1 simply follow KMR(1993)’s approach.



2.3 and 2.4 illustrate the digraphs in H. and G. for Z = {1.2.3}. For each g € G..
calculate the product of transition probabilities along g. and then take the summation

of the products over g € G.. Let us denote this by Q. = 3_ ¢, [liisjyeq Pis-
Lemma 3 ¢ = (q1.q2.- " ,gn) is proportional to p.

Proof
There are two ways to generate G. from H.,. First, for each h € H... 2’ # z. by adding
a branch from z’ to z, we can generate G,. Second, for each h € H.. by adding a
branch from = to =’ # z. we can generate the same G.. Thus. Q. can be expressed
in two equivalent ways. so that Q. = >, .. qkPk: = 21;&: g-p=i. The right hand side
of this equation is equal to (1 — p..)g-. Thus._lt_heﬁ%é}ua.tion above can be written as
>4 gkPk: = g-. which implies ¢P = q. Therefore, g is proportional to . |

Since g is proportional to p. we get u> = lim Zq::‘()() = Zq;q" where g~ is defined

using pj; = lim.opi;(€) instead of pij(e).
Lemma 4 (1 —p..)q. =0 foranyz € Z ={1.2.--- .n}.

Proof
If = = n*. then (1 — pi.,.)g" = 0- ¢ = 0. If = # n". for any tree h € H.. there
is an arrow from n” to some state j # n*. But the probability of this transi-
tion, pi.; = 0 for all j # n*. Hence, for any h € Ho[linjen?; = 0. Thus.

q = ZheH: H(Hj)eh p;; =0. This establishes the lemma. B

(]
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Proof of Theorem 1

Lemma 1(a) simplifies the transition probability matrix P(e) as follows.

pu(e) P12(€) oo Prar-1(€) Pin*(€) < pinle) \
pai(e€) p22(€) oo Panr-1(€) Pan=(€) coo panl(e)
P(C) = pn‘—ll(f) pn'—lZ(e) e pn'—ln‘—l(f) pn’-—ln‘(f) e p'n‘—l'n(f)
0 0 - 0 Pren+(€) < Pren(€)
\ 0 0 o 0 Puns(€) - panl€) )

From p(e)P(¢) = pu(e), we have 13

HiPine + p2pans + -+ UnPans = Hne

U1P1ns+1 + H2P2neg1 T+ 0+ UnPanc41 = Hnegl

HFiPn + HaP2n + -+ HnPnn = Hn

Summing both sides of these equations gives rise to

Z#iZPn’= Zﬂi (2.1)
=1 j=n*

j=n*

This equation can be written as follows.

n*-1 n n n*-1 n
ZuiniﬁZufZ(l—mFZui (2.2)
1=1 j=n* 1=n* j=1 Jj=n*

13From now on, for notational simplicity, we replace p;;(¢) and p;i(¢) by pi; and pi. respectively.
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Since p;; = 0 for j < n” <2, the second term of the left-hand side of this equation
is reduced to y__,. pi- Then from the equation (2.1), we get ST Y Pi; = 0.
Now notice that Z?zn. pi; > 0 for 2 < n” from Lemma 1(b). From this it fol-
Jows that gy = pg = -+ = pp=—y = 0, and thus u} = p3 = -+ = ppoy = 0.
Since we are interested in the limit sets. we can focus on the reduced state space.
Z = {n",n" + 1,--- ,n}. Since the argument used in the proof of Lemma 4 does not
depend on the specification of state space, we get (1 —p:,)g; =0forany z € Z. where
q; is defined using only the states contained in Z. Then for z > n*,(1 —p},) = 1
implies ¢ = 0. Then u; =0 for z > n*, because u; = -z—:q~—: Therefore, p,» = 1 from

Z?:] p; =1 u

2.4 Simulation Results

As shown in the previous section, in the long-run equilibrium, active-fair players coop-
erate while selfish and discouraged-fair players defect. However. how many fair play-
ers are discouraged depends on the initial configuration of players and the matching
rule. If the same population is spatially distributed in a different way. the long-run
cooperation rate will also be different. For example. for a sufficiently high m. the
cooperation rate will be smaller if two types of players are integrated rather than
segregated. We would like to see how the “average” cooperation rate in the long-run
equilibrium changes as we vary matching rules. For this purpose, I performed the
following simulation analysis. '

The behavior rule specified in Section 3 can be used to generate various rules for

fair players depending on the values of g,y. and l. For example, if 1 < &¥ < :—i’%

14There are many simulation analyses on the evolution of cooperation in various settings. For
example. see Glance and Huberman (1993), Nowak and May (1992).



fair players will employ follow-the-majority rule in deciding their choices, which is

described by ° 1®

0 ifie S,

Bi(acs) 0 with probabilty (1 —¢) if i € F and Zf___l aixji-1 < k,
ila-1) = §
1 with probabilty € if i € F and ZLI aizji-1 < k,

| 1 ifi€Fand ¥i, aije1 2 F.

According to follow-the-majority rule, fair players cooperate unless more than half
of their neighbors defect. Follow-the-majority rule is useful in that it is consistent
with commonly observed behavior rule of fair players, and that it also simplifies the

simulation analysis.

2.4.1 Long-Run Cooperation Rate

For a given fraction of selfish players, the long-run cooperation rate is determined by
the initial configuration of each type, the size of neighborhood, the size of population.
and the degree of overlap or dimension effect. Table 2.2 presents the average long-run
cooperation rate for various matching rules, where N = 100 and number of repetitions

= 100. As expected, the long-run cooperation rate is decreasing in the fraction of

selfish players m. 7

15This condition says that the loss from deviating from mutual cooperation should be slightly
greater than that from mutual defection. As the number of neighbors increases, the set of parameter
values satisfying this condition becomes smaller.

16Due to 43X > 1, this follow-the-majority rule is biased toward cooperation when there is a tie
in the number of cooperators and defectors. If &34 =1, fair players become indifferent between two
actions in the case of tie.

17From now on, the long-run cooperation rate means the average long-run cooperation rate.
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Number of Neighbors Effect

Figures 2.5 and 2.6 show how the long-run cooperation rate changes as the number
of neighbors increases. There are two effects behind this number-of-neighbors effect.
First, we can expect a globalization effect. As the number of neighbors approaches
to the size of population, fair players’ action will be mainly determined by m; In
the case of global interactions, all fair players defect (cooperate) when m > 50%
(m < 50%). Thus for m < 50%, as the number of neighbors approaches N, the long-
run cooperation rate will increase. This effect is shown in Figure 2.7, which reports
the simulation results for wide range of neighborhood sizes. Second, there is a bias
effect. As the number of neighbors increases, follow-the-majority rule of fair players
makes them more likely to defect because it favors cooperation when there are equal
number of cooperators and defectors. '® However, if the population is highly selfish.
or matching rule is quite local, the neighborhood size has a negative effect on the long-
run cooperation rate. Therefore, the neighborhood size effect can be summarized as
follows. First, if m > 0.5, then as the number of neighbors increases, the long-run
cooperation rate decreases. Second, if m < 0.5, then the long-run cooperation rate

initially falls and, beyond some point, rises again.

Population Size Effect

Figure 2.8 shows how the long-run cooperation rate is affected by the size of total
population. Striking is the fact that the larger the population, the lower the minimum
cooperation rate. This tells us that large society is more likely to suffer from extremely
low cooperation even when the population is not seriously selfish.

The combination of a number-of-neighbors effect and a population size effect can

18]f k=1 < 47¥ < 1, we obtain another follow-the-majority rule that favors defection. In this case,
this second effect is in the opposite direction.
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explain the commonly observed fact that as people interact with more people. they
become less cooperative. For example, people living in a large and crowded city
like New York or Seoul are relatively non-cooperative. As social interaction becomes
broader with the spread of modern civilization, social cooperation becomes harder to

realize.

The Rate of Convergence to Long-Run Equilibrium

For low m, the number of neighbors effect is negligible. However, it takes more
time with larger number of neighbors case to converge to the long-run equilibrium.
Therefore, the number of neighbors effect matters even for low m during the transition

period. This point is clear in Figure 2.9.

Dimension Effect

Figures 2.10 and 2.11 depict the effect of the degree of overlap on the long-run co-
operation rate. Beyond some level of m, the long-run cooperation rate is lower in
two-dimensional matching. There are two factors behind this dimension effect. First.
a high degree of overlap implies that discouraged-fair players have many neighbors
who have discouraged them, and with whom they can discourage other neighbors.
Second, a high degree of overlap also implies that discouraged-fair players have few
neighbors whom they can discourage. As m increases, the second factor becomes
more important. Therefore, when the fraction of selfish people is relatively high,

one-dimensional matching is desirable and vice-versa.
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2.4.2 Payoff Difference

In order to compare the average payofl of players of each type. we consider a numerical
payofl matrix. The payoff matrix from play between selfish and fair type is presented
in Table 3. If 0 < § < %, fair players will use follow-the-majority strategy. By
assuming that § is close to 0, however, we ignore § in calculating the average payoff
of players because this does not make any significant difference. Figure 2.12 provides
the level of utility for each type. For any m, a fair player’s average payoff is decreasing
as the number of neighbors increases. Here we consider only the quite local matching
rules such as C2, C4. and C8. But the effect of the number of neighbors on the

average payoff of selfish players depends upon the level of m. For low m. the long-run

-

cooperation rate is increasing in the number of n :‘i’éhbors. so that a selfish plaver's
benefit from cheating becomes larger. For high m, however, as more fair plavers
defect. the chance of taking advantage of other people becomes smaller. Figure 2.13
depicts the payoff difference of two types of players. Since high m makes agents
less cooperative, the payoff difference becomes smaller as m increases. The payoff
difference becomes smaller (larger) as the number of neighbors increases in a relatively
selfish (fair) population.

Until now. we assumed that player's types are fixed. Now let us suppose that if
the payoff difference between two types is greater than a critical value. plavers are
allowed to change their types. Consider a population with a small fraction of selfish
players. As the number of neighbors increases, the payofl difference becomes larger.
Then some fair players will be changed to selfish players. This will lower the overall
cooperation rate while the payoff difference becomes smaller. By the same argument.
if we start with a highly selfish population, the payoff difference becomes smaller

as the number of neighbors increases. Then there will be more fair players than in
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the beginning. Therefore we can conclude that if players can change their types in
response to the change in payofl difference, the fraction of selfish players tends to

approach a medium level as the number of neighbors increase. °

2.5 An Application to Implicit Collusion in the

Monopolistically Competitive Market

2.5.1 The Economic Framework

Consider a monopolistically competitive market in which a large number of firms
produce a homogeneous product. Each firm does not compete with all other firms.
but with a subset of these firms. For a simple description of the local interactions
among firms, let us suppose that N firms are geographically distributed on a circle
or a torus as illustrated in Figure 2.14. 2° In both cases. a group of consumers (C) is
located between two adjacent firms(F). Each consumer wishes to purchase one unit
of good, but because of transportation costs. he can only buy from one of the two
closest firms. Therefore, each firm on a circle interacts with two rival firms. and each
firm operating on a torus interacts with four rivals. A

To simplify computations, we assume that production cost is zero. The demand
of each consumer group is normalized at 2. Suppose that initially all firms are selling

the product at a low price, P, and market share is equally distributed across firms.

19Frank, Gilovich, and Regan (1993) derived a similar result for one-shot prisoner’s dilemma.
They considered two types of players, those who always cooperate and those who always defect.
And players are assumed to be able to tell the type of other players with some effort and choose
their own opponent. In this framework, they show that the population settles at a stable mix of
cooperators and defectors, one in which everyone receives the same average payoff and therefore
equally likely to survive.

20We may replace the assumption of geographically distributed homogeneous firms by the assump-
tion that firms produce differentiated progucts and that each consumer group has demand for only
two perfect substitutes without much loss of generality.

21For this particular example, only two matching rules apply, C2 and T4.




Now suppose that for some reason. consumers’ reservation price has risen to Py . and
this becomes a common knowledge among firms. This makes a room for firms to
collude and raise the price to P = Py. Since there is a large number of firms in this
market, however, any collusive behavior tends to be implicit and spontaneous. If all
firms charge the high price, the profit of each firm will rise to Py from Py. If one of
the two firms competing for the same group of consumers charges a high price and
the other firm charges a low price, then the high price firm will get 0 and the low price
firm will get 2P;. We assume that firms are utility maximizers and that the utility
function depends on the firm’s type. For a selfish firm, the level of profit represents
the level of utility. But a fair firm is characterized as feeling guilty if it breaks the
collusion by undercutting the rival firm. so that it gets the utility of 2P, — g in this
case. Table 2.4 describes the payoff in terms of utility for the two firms competing
for the same group of consumers.

When a firm meets a consumer. it cannot know with which firm it is competing
for the particular customer. When deciding the selling price. therefore, each firm
considers the prices of all of its rival firms and charges the same price for all of its
customers. Selfish firms will stick to the low price. which is dominant strategy for
them. On the other hand. if 3P, — Py < g < %I-PL — Py is satisfied. fair firms in the
model of C2 or T4 will use the follow-the-majority rule. And by assuming Py > 2P;.

we can guarantee any fair firms incentive to make random experimentation.

2.5.2 Relationship between Structure of Interactions and De-

gree of Collusion

In the long run, only and all active-fair firms are expected to collude by the dynamics

described in Section 3. Figure 2.15 compares the long-run cooperation rate of C2 and

(3]
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I'1. For m > 0.30, C2 yields the higher cooperation rate. Therefore. firms will make
. larger profit in C2 and consumers will face a lower price in T4. The significance
of this difference would be large during the transition period if the probability of
random experimentation is small.

From the simulation result in Section 4. we can get the following implication for
the relationship between the number of rival firms and the degree of implicit collusion.
First, when m > 0.5, the more rival firms each firm competes with, i.e., the more
variety of substitute good each consumer has, the lower the average price. Second.
when m < 0.5. as the number of rival firms increases, the degree of collusion initially
declines and. beyond some point. rises. This result is in contrast with a common
knowledge that the more firms in the industry, the harder it is to keep the collusion.
It depends on what proportion of firms in the industry are fair type.

The literature on cartel among selfish oligopolistic firms tells us that with more
firms. it becomes harder to sustain the cartel because of the increased difficulty in
enforcing the explicit agreement. In a monopolistically competitive industry, any
collusive behavior tends to be implicit because of the network structure of interactions
across the whole industry. When fair firms coexist with selfish firms in the industry.
the structure of interactions plays an important role in determining the performance
of collusion. In the oligopoly industry. firms tend to interact globally. On the contrary.
monopolistically competitive firms tend to compete with a small number of rival firms.
where the number of rival firms for each firm is determined by substitutability among
products. In the global interaction case, collusion among fair firms will be either
perfect success or complete failure, depending only on the composition of two types
in the industry. However, in the local interaction case, the degree of collusion will
be in between these two extremes, where the average price level is determined by the

number of tival firms as well as the proportion of each type in the industry.
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2.6 Conclusion

In this paper 1 have discussed how fair players will cooperate in the face of selfish
players who never cooperate. The main conclusion of this analysis is that the structure
of interactions plays an important role in determining the level of cooperation in a
heterogeneous population. This implies that when we study the collusion of firms, we
need to take into account the market structure. In the oligopoly industry, for example,
firms tend to interact globally. On the other hand, monopolistically competitive firms
tend to interact locally. Therefore, the performance of collusive behavior can be
different in these two industries.

It will be an interesting project to verify the simulation results by using empirical
data about the performance of collusive behavior of monopolistically competitive
industries with different number of rival firms. This model can also be used to explain
sociological issues such as the effect of the interaction structure on the rate of drug
usage among the youth, the rate of firearms possession, the diffusion of fashion, and

student behavior in school.
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Table 2.1: Three Possible Games

(*z >0,l>0,and 0<y < g.)

S:F C D
T,T —l,:r+y—g

T+y~,_l 0,0

S:S C D

C z, T —-l.x+y

D r+y.—! 0,0

F:F C D
C T, T ~lr+y—g

r+y—g.—l 0,0
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Table 2.2: Long-Run Cooperation Rate

m(%)| C2 | c4 | c8 | C12 [ .T4 | T8 | TI2
10 89.15 | 89.59 | 89.95 90.00 | 89.71 | 89.98 | 90.00
20 77.10 | 76.30 | 77.19 | 77.75 | 77.69 | 78.89 | 79.83
30 | 63.82 | 59.10 | 52.21 | 46.68 | 62.79 | 54.46 | 50.19
40 [50.31 |41.22|22.85 | 9.94 | 43.77 | 579 | 1.06
50 | 36.95 (2587 | 8.02 | 3.23 2324 0 | 0
60 25.40 | 13.43 | 2.89 | 0.49 | 9.71 0 0
70 15.09 | 5.84 | 1.03 0 2.46 0 0
80 | 696 | 168 005 | 0 |020] 0 | 0
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(*0<é< %)

S:F C D

D 3,0 1,1

Table 2.3: Payoff to Players of Different Type

Table 2.4: Payofl to Firms of Different Type
&PL -Py<g< %PL — Py and Py > 2Fp).

;

S:F High Price (P=Py) | Low Price (P=PL)
High Price (P=Py) Py, Py 0,2P, —g
Low Price (P=P.) 2P, 0 P, P,
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Figure 2.1: One dimensional matchings
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Figure 2.2: Two dimensional matchings
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Figure 2.3: H3

Figure 2.4: G3
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LONG-RUN COOPERATION RATE

Figure 2.5: Number-of-Neighbors Effect (1): One Dimensional Case
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LONG-RUN COOPERATION RATE

Figure 2.6: Number-of-Neighbors Effect (2): Two Dimensional Case
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COOPERATION RATE

Figure 2.7: Number-of-Neighbors Effect (3): (N =100,r = 500)
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COOPERATION RATE
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Figure 2.8: Population Size Effect: (m = 35%,r = 500)
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Figure 2.9: Cooperation Rate over Time (m = 10%,p = 0.1)
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Figure 2.10: Dimension Effect (1)
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LONG-RUN COOPERATION RATE
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Figure 2.11: Dimension Effect (2)
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Figure 2.12: Average Payoff of Each Type (top:selfish)
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PAYOFF DIFFERENCE

Figure 2.13: Payoff Diflference between Types
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Figure 2.14: Geographical Distribution of Firms and Consumers: C2 and T4.
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LONG-RUN COOPERATION RATE

Figure 2.15: Comparison of C2 and T4
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Chapter 3

The Optimal Size of Committee
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3.1 Introduction

In this chapter, we want to provide a theory of optimal size of decision making body.
be it a single person or a committee of several. We abstract from political and
strategic issues by assuming that all potential committee members have the same
preferences. Our focus is on the element of slowness in a group decision, versus the
greater accuracy of decision making due to the pooling of information from several
sources.

The pooling of information is straightforward to model. We consider a decision
whether or not to make an investment (or some other single binary decision). The
investment has an uncertain value that may be either positive or negative. Each
individual has an independent signal about the value of the investment. Consequently.
the highest value will be realized if all these signals are averaged prior to making a
decision.

The issue of delay is more complex. We model the cost of delay as simply the
time cost of forgone profit. This implicitly includes various possibilities that can be
modeled through discounting, such as a fixed chance each period that the investment
opportunity disappears. There are several possible reasons why a large committee
may have a greater propensity to delay. First, there may be more political maneu-
vering. but this is ruled out in our team setting. Second, there is the problem of
communicating information. It may take some time for each member of the commit-
tee to fully communicate his signal to the entire committee, so that information can
be pooled. Finally, there is the scheduling problem: the larger the committee, the
more difficult it will be to schedule a meeting at which all members will be present.
Implicitly this third model subsumes the second: the length of the meeting is due

to the length of time required to communicate, and the scheduling problem occurs
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because all members must be present for the information to be pooled. Consequently.
we focus on a model in which potential committee members are available to meet onlS*
at random times. The larger the committee, the less likely a meeting of all members
can be scheduled quickly.

We also consider two types of committees: standing committees and ad hoc com-
mittees. Standing committees have a fixed set of members all of whom must be
available simultaneously for a meeting to take place. This is a sensible form of or-
ganization when experience is an important consideration in decision making. In ad
hoc meeting, scheduling is easier. There is a large set of equally capable potential
committee members, and a meeting takes place as soon as the first group of n mem-
bers can be arranged. Exactly which people form the committee is irrelevant. This
is sensible when no special expertise is involved in making the decision.

Within the context of individualized information and scheduling, our goal is to
analyze optimal committee size. whether one or greater. Our goal is to establish
that the model reflects our basic intuition about committees: the greater the cost of
time delay and the less diverse the information, the smaller the size of the optimal
committee. We are apt to expect optimal ad hoc committee sizes to be larger than
standing committees, as it is less costly to form a meeting. However, we will show
that it is possible for the optimal size of standing committee to be larger than that
of ad hoc committee.

Finally we will consider a situation in which experience can improve the accuracy
of decision making. By repeatedly participating in a sequence of decision makings.
standing committee members can accumulate expertise in the form of knowledge that
cannot be transferred to the other people, or ability to obtain more precise signal. By
modeling the effectiveness of standing committees in terms of the ability to receive

more signals at the same cost, we will show that if the decision maker is facing a
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Jarger number of decisions in the future, he will form a standing committee consisting,
of fewer people.

This chapter is organized as follows. In Section 2, we model the decision maker's
uncertainties and the distribution of signal, and derive the posterior distribution of
the value of investment. And we also derive the expected return from the committee
decision making. Section 3 examines the optimal size of committee by considering
the cost of forming a committee. Section 4 investigates the ad hoc committee case.
In Section 5, we compare the optimal sizes in the standing committee and the ad
hoc committee. Finally, Section 6 extends the model to the relaxed decision making

problem and Section 7 concludes.

3.2 The Pooling of Individualized Information

3.2.1 Uncertainties and Signals

We consider a decision whether or not to make an investment. The investment has an
uncertain value, u, which is distributed according to a normal distribution with the
mean j and the variance s*. The values of /i and s? are known to the decision maker.
where ji can be interpreted as a prior about the value of the investment project. Then

we have

u~ N(i,s?

flp) = 2o(252),

where f(u) denotes the probability density function of u. And ¢(u) denotes the prob-

ability density function of standard normal distribution, so we have

52




#{u) = Jmeap(—1u)

Then the cumulative distribution function is given by

o(z) = ffoo (u)du.

Each individual i receives a signal z; about the value of the investment project.
Signals are independently drawn from a normal distribution with the mean u and the

variance o2, where o2 is known to the decision maker. Then we have

i~ N(po?)

ol | ) = LofEn),

where g(z; | p) is the conditional probability density function of z; given that the
value of investment is p.
Now consider a committee consisting of n individuals. By pooling n signals of this

committee, we can compute the sample mean, Z,. ! Then we have

o~ N, 2)
h(Zn | p) = LEp(L2lenp)y,

where h(Z, | p) denotes the conditional probability density function of Z, given that
the value of investment is . Notice here that the larger committee, the smaller the
variance of the sample mean. Thus, the decision maker can get a more accurate

estimate of the unknown value of the investment.

1Here we implicitly assume that individuals within any committee can fully communicate their
signals to others. By contrast, Sah and Stiglitz (1984, 1985) consider the case in which commu-
nication is very limited such that individuals can convey to one another only whether their signal
ifslrgsitive or negative. Koh (1992, 1994) and Sah (1991) also adopt this assumption of human
allibility.
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Bv using signals from the committee members. the decision maker will update his

belief about the distribution of u according to Bayes’ rule.

Proposition 1 Suppose that the prior distribution of p is a normal distribution with
known values of the mean fi and the variance s%. Suppose also that (zy.--+ ,Zn) i
a random sample from a normal distribution for which the value of the mean p 1s
unknown and the value of the variance o is known. Then the posterior distribution
of p 1s a normal distribution for which the mean u; and the variance s? are as follows:
p1 = AZn + (1= At

and

2
s2 = (1 — M)s?, where A = F55-

Proof

See Theorem 3 in DeGroot(1989) p.324. |

3.2.2 Expected Return from the Committee Decision Mak-
ing
Once having pooled its members’ information. the committee will undertake the in-

vestment project if Az, + (1 — A)iz 2 0. Then the conditional probability that the

committee will decide to make the investment given the value of u can be expressed as
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1-2A
Prob[Az, + (1 —A)ia>01u] = Prob|-z, < —)‘—-p | 1)

—Intp (1=XNi/r+p
o/vn = a/vn
(1—/\);1/>\+u)

o/vn
Uzﬁ/ns2+u)

a/v/n

= Prob]

= &

Now the expected return from the committee decision making can be written as fol-

lows.

Vimso®,,5) = [ wProbaa + (1= XA 2 0| klf(n)ds

I L T A OV el
= [ LT e

The above form of V(n) is difficult to integrate without making further assumption.
In order to simplify the computation, we assume that i = 0, i.e., the decision maker

is indifferent to making investment before he collects any information.

Proposition 2 If i = 0, then the ezpected return from the committee decision mak-

ing is given by

1 32\/5
V(n;0%,8%) = .
(ni 0" 57) V27 /ns? + o2
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Proof

If i = 0, then V(n) is reduced to

Vi = [ et el

-0

Now V(n) can be integrated by parts. For this, let us change the variables as follows.

_ y
N

_ Vn, o H
du = P ¢(J/\/ﬁ)du
v = Eo(Eydn
v o= —sd)(%)

Then we have

Vin) = f " udv

- et [ 2 e
I R LY R
= [ 2o f e

Now we can rewrite the integrand as follows.

p py 1 1,y s
¢(0_/\/ﬁ)¢(;) - 'z_ﬂ_exp_é((o_/\/ﬁ)g-*- 82)
1 1 puvns?+o0?,,

= er (T )

ZNote that i‘%‘ﬂ = —u¢(u).
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Then we have

1 syn 1, pv/ns? + o2

> 1
Vin) = xp— = 2du.
)= = [ ey (L Ty,
Now let us change the variables as follows.
, = pvns? + o?
B os
os
dy = ————=d
K vns? + o? :
Then we have
. 1 sv/n  os < 1 x?
Vin) = erp — —dzr
"= e st VT

1 s2y/n -
- V21 V/ns? + o2

It is interesting to see how the expected return depends on n, o2, and s2.

Lemma 1 (a)V(n;0?,s?) is increasing in n.
(b)V(n; 02, s?) is increasing in s2.

c)V(n; 02, s?) is decreasing in o?.
g

Proof

From the proposition 2, we know
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Now we have only to check the signs of partial derivatives of V(n; o2, s?) with respect

to n, s?, and o2.

ov 21 1
Frl S_Qﬂ[in'%(ns2 + 02)'% - —2-n%s2(ns2 + 0472
2.2
= 72, ;(ns2+02)'%>0

Vv 11
% = -—\/%nﬂ(ns"’ +0%)77 - Ens"’(ns2 + 02)'%]

v o_ 1,
do? W12

Lemma 1 verifies our intuition. First, a bigger committee can make more accurate

decision by pooling more information. Second, a high value of s? implies that there
1s a high chance that the absolute value of the investment is very large. Since the
investment will be undertaken if and only if x is judged to be negative. the expected

2

return increases as s* increases. Third, if signals are less precise, the probability of

making an incorrect decision is high, so the expected return becomes smaller.

3.3 The Optimal Size of Committee

By using more signals, the decision maker can improve the chance of making the
right decision, i.e., undertaking only the profitable investment. However, we should
also consider the cost involved in increasing the size of committee. There are many
possible sources of this cost. It can be a compensation for hiring committee members,
or it can be a time cost of possible delay in making a decision. Here we want to focus

on the cost of scheduling a meeting in terms of delay. We model the cost of delay as
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simply the time cost of forgone profit. This implicitly includes various possibilities
that can be modeled through discounting, such as a fixed chance each period that tvhe
investment opportunity disappears. Now we want to model the cost of delay in form-
ing a committee of n people. Suppose that each individual is available to meet with
probability p. We will consider two types of committees; standing committees and
ad hoc committees. In this section, we focus only on standing committees. Standing
committees have a fixed set of members all of whom must be available simultaneously
for a meeting to take place. This is a sensible form of organization when experience
is an important consideration in decision making.

Let 75(n;p) denote the probability that a committee of n individuals can be

formed. Then we have _ =50

mS(n;p) = p". (3.1)
Then the probability that a meeting of n people is possible for the first time at
period t is (1 — m(n))~'m(n). ® And let § denote the probability that the investment
opportunity is still available next period.

Now the decision maker’s optimization problem can be expressed as follows.

Maz, i(l —m(n)) " 'n(n)é" IV (n) = %

t=1
which is equivalent to
m(n)

Maze o9y =5 min)

+ logV (n). (3.2)
Let us define the total benefit and total cost of committee decision making as follows.

TB(n) = logV(n)
1-94
m(n)

3m(n) is a simplifying notation for 75 (n; p) until we introduce ad hoc committee.

TC(n) = log(

+6)
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Since the choice variable (n) is discrete, the optimal committee size, n* satisfies

TB(n —1) = TC(n* = 1) < TB(n") = TC(n") < TB(n* + 1) = TC(n" +1).
(3.3)

For simplicity, however, we want to approximate the discrete optimization problem

by the continuous optimization problem. # Then the first order condition is

1-§ 1onr 18V _,

) = T 53 g nan T Vo - (34)

Let us define marginal benefit and marginal cost as follows.

10V 1
MB(n) = Von 2n(ns?/o? + 1)
- N -
MCS(n) = d—1 1 0r°  (6—1)logp

1-6+émSnS dn  1-8+6pn
Then the first order condition simply says that marginal cost and marginal benefit

should be equal at the optimal size of committee, ng.

Lemma 2 (a)M B is decreasing in n.

(b)MCS is increasing in n.

Proof
OMB 2ns?/o? + 1
on  2n%(ns?fo? + 1) <0.
oMC 1-6 6 Om, 1-6 1 0rm, 1-6 18
on (1—6+67r)2-7;(5r:) 1-5+5WF(EZ) T 1-6+énmon?
0*n  On 1 )

. . e _2 It -
> 0 if and only if anz/(an) <7r+1—6+67r'

4Since we have only one choice variable, this can be a good approximation.
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Since we know

ons
—_ = "1 < 0,
on p togp
0*ns
and = p"(logp)* > 0,
on?
we have
2, s g
o°m /(87r )2=L=L'
on? " On pn S
Therefore, MC? increases as the committee size increases. [ |

Corollary 1 In case of standing committees, the second order condition is always

satisfied for any n.
Lemma 3 MC? is decreasing in §.

Proof

OMCS _ 1 o’
36 ~ (1-64875)2 On

< 0. |
Lemma 4 MC? is decreasing in p.

Proof

GMCS_ d—1
dp (1 =46+ 6pr)?

(1=6+468p"+(1—p)dnp"™') <0. ]
Lemma 5 MB is decreasing in 525

Proof

Since M B(n) = it is obvious that marginal benefit is decreasing in :—22

1
2n(ns?/o241)*?
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. . . . 2
Theorem 2 n% is increasing in p.d. and 5.
o S

Proof

It is following from Lemma 2, 3, 4, 5. |

Theorem 1 verifies our intuition. First, the higher the probability with which
potential committee members are available to meet, the easier it is to schedule a
meeting. Therefore, the optimal size of committee is bigger. Second, if the investment
opportunity is less likely to disappear, the cost of delay becomes smaller. Thus the
optimal size of committee increases in §. Third, as s? increases, the value of additional
signal increases because of the higher probability of making big money, but as o’
increases. the value of additional signal decreases because the signal becomes less

precise. Since the effects of s* and o? are in the opposite direction, n% is increasing

Corollary 2 The set of parameter values for which the optimal committee is com-

posed of a single individual is decreasing in p,6, and 5.

We can say that ny < 1if MCS5(n = 1) 2 MB(n = 1). i.e, -:—22 > %’-_'—_6]—*)'1% -1
In Figure 3.1, the area above the curve shows the range of the parameter values for

which the optimal committee size is equal to one, where we focus on the cases in

which 6 = 0.9.

3.4 ad hoc Committees

In this section, we will consider ad hoc committees. There is a large set of N equally
capable potential committee members, and a meeting takes place as soon as the first

group of n members can be arranged. Exactly which people form the committee 18
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irrelevant. This is sensible when no special expertise is involved in making the deci-
sion. Then the probability that an ad hoc committee of n members is formed in each

period is given by

N /N
m4(n;N,p) =Y (k)z’k(l -p)N k. (3.5)

k=n

Since this probability is defined only for integer n, the derivatives of this function

can be replaced by the differences.

0
52- = n(n+1)—n(n)
7
= —(A)p"(l—p)’v'”<0
n
&m _ Or(nt+1) OIr(n)
on? on on

N o (N . .
= —( >p"“(l —p)N T 4 ( )p (1-p
n+1 n

< 0 ifandonlyif n<p(N+1)-1.

We know that 324_110 > 0 if and only if ?T’;/(g—:)? <14 T—;W Therefore. if n7, <
p(N + 1) — 1, and thus -g—i% < 0, then the second order condition of optimization
problem is satisfied. In contrast to the standing committee case, we have to check

the second order condition in the ad hoc committee case.

Lemma 6 MC4 is decreasing in §.

Proof

MC'A_ 1 87TA<O -
96 (1 =46+ 6nA)? 5.” )
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Lemma 7 MC4 is decreasing in p.

Proof
- CBMCA _ 1= 8 BmPm , _1=8 1 09mdm _ _1-8 1 8>
Since we know 55— = (1—6+61r)2 m Spon t Todvdn wT op on ~ Tod4dr wopan > U if and
an  9n
only if 8p8'n/ (ap an

£y < = + = 5 5.~ In order to prove that marginal cost is decreasing

in p, we have only to show

Pr o om 1
 —< = 3.6
apan/ap Oon— (3.6)
Since we have
E = i(N P11 -pVN N k-=Np)>0 for 0<n< N
ap k=n k i ‘
9*rA N Nenei n—Np Ort
= - —p)" " (n—Np) = . ;
Gpon (n>P(1 p) (n— Np) p1—p) on
the equation (2) can be written as
n— Np 1

¥ hen (]Z)Pk(l“‘P)N"k(k—Np) Zk_ ( )pk(1 — p)N- -k

And this inequality holds because we have

AY
N
- np) 3 ()t - <z() PNk~ Np) .
k=n
Theorem 3 n% is increasing in p,d, and ‘;—,

Proof

The effect of an increase in p, or é on n’ follows from Lemma 2, 6, and 7. And since

the proof of Lemma 5 does not depend on cost condition, the effect of é on n* is

independent of the type of committee. |
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3.5 Comparison of the Optimal Sizes in the Stand-
ing Committee and the ad hoc Committee

Because of different cost conditions, the optimal size of standing committee may differ
from the optimal size of ad hoc committee. We know that the total cost is always
greater in the standing committee, since 74(n) > 75(n) for 0 < n < N. However,
marginal cost can be greater in the ad hoc committee for n sufficiently close to N.
Therefore, if n’, is sufficiently close to N, then n% may be greater than n}. In order
to see this, we consider some numerical examples, which are depicted in Figure 3.2.
5 Here we consider the cases in which § = p = 0.9, and ;—2, = 0.1. And (a), (b), and
(c) are corresponding to the case in which N =..__15f5':""7"\1 =12and N = 10, respectively.
As N decreases, we can see that the difference between the optimal committee sizes.
(n}, — n%), is decreasing; when N = 12, n}, is almost the same as n. And when
N = 10, the optimal size is smaller in the ad hoc committee case. This result reflects
our intuition that t};e less the potential committee members, the sooner disappears

the cost advantage of ad hoc committee in scheduling a meeting. Figure 3.3 shows

how the optimal size of committee is changing as the values of %,p, and 4 change.

3.6 Repeated Decision Making

Until now, we have considered only one-shot decision making problem. In the real
world, however, we may face a sequence of decision making problems of the same kind.
In this case, standing committees may be more efficient than ad hoc committees. By

repeatedly participating in a sequence of decision makings, standing committee mem-

. . . 8
5When we draw marginal cost curves, we are using 7(n + 1) — m(n) instead of -l , because

n4(n) is defined only for integer values. By doing this, we can compare two types of committees
with ease.
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bers can accumulate expertise in the form of knowledge that cannot be transferred to
other people, or ability to obtain more precise signal than other unexperienced or less
experienced people. In this section, we want to model the effectiveness of standing
committees in obtaining signals. Since having more signals is equivalent to having
better signals in improving the accuracy of decision making, in order to simplify the
analysis, we assume that the number of signals that a standing committee member
receives is proportional to the number of times that he or she has been participating
in the decision makings of the committee.

Let K denote the number of decisions that a committee is expecting to make
in the future. Then the expected return of k-th decision making can be written as
V(kn), for k =1,2,--- , K, since each individual receives k signals in the k-th stage.
And suppose that the decision maker discounts the value of future investment by
using the discount factor 3. Then the optimal size of standing committee facing A’

decisions, ng, solves

m(n)V(n) n(n)V(2n) . k-1, T(n)V(Kn)
Mazn (5 g TP 55 amm) Tt U enn)
which is equivalent to
k=1

Maz, 1_5”” n)Zﬂ V(kn),

which can be rewritten as
Maz log——l(-—)—-—-— + logZﬁk 1V (kn). (3.7)
" 1 -6+ dn(n)
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Let us define the total benefit and total cost of committee decision making as follows.

X
TB(n;K) = log) B*'V(kn)
k=1

1-46
m(n)

TC(n) = log( + 4)

Then the marginal benefit can be written as

MB(n; K) = 2k B KV (kn)
’ Zi\=1 B%-1V (kn)

Then the first order condition is given by

MCS(n3(K)) = MB(n3(K), K).
Lemma 8 M B(n: K) is decreasing in K.

Proof

It is enough to show

(k+ OV/((k+ )n) _ KV (kn)
V((k+1)n) V(kn)’

which is equivalent to

(k+ 1) V'(k+1)n) < V((k+1)n)
k V'(kn) V(kn)

(3.8)

Since we know

S

Vin) = ni(ns® + 02)'%
V2T
0'282 1 3
Vi(n) = n~%(ns’ 4 0?)”2
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the right hand side of the inequality (3.8) is given by

kns? 4+ o2
(k + 1)ns? + o2

V((k+ 1)n)
V(kn)

Wpe

)% (

=

k+1 )
Z .

And the left hand side of the inequality (3.8) is given by

k+1V'((k+1)n) k+1 . k 1 kns? + o2
P s A Py s

[S]1X]

Then the difference between the right hand side and the left hand side of the

inequality (3.8) is given by

V((k + 1)n) : kns? + o2

Ve T G Dnsigo?) >0 .

Theorem 4 n%(K) is decreasing in K.

Proof

It is straightforward from Lemma 8. .

If a committee is expecting to make a large number of similar decisions. the
optimal size of committee is likely to be small, because as the committee members
accumulate expertise, the marginal benefit from additional signal is decreasing. By
the same logic, we can say that as the rate with which the expertise is accumulated

increases, the optimal committee size is decreasing.

3.7 Conclusion

In this chapter, we verified our basic intuition about the optimal size of committee:

First, the greater the cost of time delay and the less diverse the information, the
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smaller the size of the optimal committee. Second, for a wide range of parameter
values, the optimal sizes are larger in the ad hoc committee than the standing com-
mittee. However, standing committee can be larger than ad hoc committee under
some conditions. Third, when a committee is expecting to make a large number of
similar decisions, the optimal committee size is likely to be small.

It is obvious that, for one-shot decision making, standing committees are defi-
nitely inferior to ad hoc committees because of larger cost and no chance to utilize
experience. However, in the repeated decision making case, standing committees may
can be better than ad hoc committees because of the benefit from experience. In the
future research, ] want to consider the relative performance of a standing committee
and an ad hoc committee by examining the tradeoff between larger scheduling cost

and better signals from expertise accumulation.
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Figure 3.1: Set of Parameter Values for which ns =1
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Figure 3.2: Comparison of 7}y and 15
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Figure 3.3: Comparison of n’, and n%
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