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We consider a decision problem taking place over time. In each time period, the
single player can take an action by a A, an action space. All information relevant to
the future isincorporated in a state variabley Y , the state space. The dynamicsof y are

determined by a transition probability n(y’|y,cx) . We define the set of states reachable
with some probability under some circumstances from agiven state y as

S(y) = {y|0o n(y']y,a) > 0}.

We assume

(1) Alisacompact subset of afinite dimensiona space.
(2) Yiscountable

(3) m(y'|y,a) iscontinuousin o

(4) H(y) isfinite

There are two main cases of interest
CASE 1. Y, A aefinite
CASE 2: Y isatree; only immediate successors have positive probability.

Preferences for this decision problem are given by a period utility u(a,y) and are

additively separable over time (and states of nature) with discount factor 0<d<1. We
assume

(5) uisbounded by U and continuousin a

Definitions

We denote finite historiesby h=(y,,¥,,...,Y,) . For any given history, we may
recover the length of the history t(h) =t, thefinal statein the history y(h) =, , the
history through the previous period h—1=(y,,Y,,...,Y,.,) , ahd theinitial state y, (h) .
Histories are naturally ordered according to whether or not a history can logically follow
from one another. Wewrite h'>h. We say that ahistory isfeasibleif y, OS(y,_,); the

set of historiesthat is not feasible has probability zero. We denote by H the space of all
feasible finite histories. Since we have assumed S(y) finite, it followsthat H is

countable.



The object of choiceis astrategy which is amap from histories to actions
o:H - A. Wedenoteby > the space of al strategies. A strategy iscalled strong
Markov if a(h) =a(h’) if y(h) =y(h’); that is actions are determined entirely by the
state. Any strong Markov strategy is equivalent to a map

oY - A.
Given a strategy we can define the probabilities of histories by
m(hy,,0) =
m(y(h)|ly(h-1),0(h-1)mh-1y,,0) t(h)>1
1 t(h)=1andy,(h) =y,
0 t(h)=1andy,(h)#y,

We may also for any given initia state and strategy compute the expected average present
value utility

V(y,,0) = (1-8)y ,,, 8" "u(o(h), y(h))(hly,, 0) .

The Dynamic Programming Problem

The problem which we call (*) isto maximize V (y,,0) subjectto o 0X. A (not

the) value function isany map v:Y — 0 bounded by U .
Essentid to the study of dynamic programming are two infinite dimensional
objects: strategies and value functions. These naturally liein two different spaces.

Strategies naturally liein[0* the space of infinite sequences of numbers with the product
topology. Vaue functions naturally liein 7 the space of bounded functionsin the sup

norm.
From the fact that the space of strategiesis compact and utility continuous, it
follows that

Lemma 1. asolutionto (*) exists

This enables us to define the value function
v(y,) = max,; V(Y,,0)



The Bellman equation
Wedefineamap T:/, — ¢, by w=T(w) if

W (y;) = MaX, o0 (1-B)u(@, ;) +8 Y Ty [ys, a)w(y’,).

y'10S(y1)

We refer to the operator T as the Bellman operator.

Lemma 2: the value function is afixed point of the Bellman equation T(v) =v
Lemma 3:_the Bellman equation is a contraction mapping |[T(w) — T(wW')[ < 8w —w]|

Corollary: the Bellman equation has a unique solution
Conclusion 1: the unique solution to the Bellman equation is the value function

Lemma 4. thereisastrong Markov optimum that may be found from the Bellman
eguation

proof: We define the strong Markov plan in the obvious way, show recursively that it
yields a present value equal to the value function

v(y,(h)) =

(1=3)3 e 0Ny, (), 0)u(a(h), y(h)) +

(1=9)3 et O Ny, (D), )V(h)
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