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1 Notation and Definitions

Actions in the stage game for player i: a' € A’ finite
Mixed actions for player i: o' : A* — [0,1] and 3", ic 4i @ (a’) =1
Patience parameter: § € [0, 1)
Best and worst dynamic payoff for player 1: o', v
Equilibrium payoff for player 1 beginning next period if action a
lected: w' (a'). In general, we can think of the function w (-) as a function that
maps actions into real numbers. w : A' — R.
Static Nash equilibrium payoff to player 1:

1

1 was se-

nt =ul (al,a2) such that o' € BR! (ozz) A o? € BR? (041)

Pure Stackelberg payoff to player 1:

1 1,1 2
= a
ps (al,a2):IoIz£€XBR2(a1) b (a o )
Mixed Stackelberg payoff to player 1:
1_ 1,1 2y 1(.1
mse= (al,az):logaéXBRQ(al) Zlu (a @ ) “ (a )
a

Minmax payoff to player 1:

m! = min max u' (al,az)
a?  al



2 Characterization of equilibrium payoffs

For v! to be the equilibrium payoff associated to a fixed a!, the following two
equations have to be satisfied

vt > (1-0)u' (a,a?) +ow' (a'),  Va' e A (IC)

and
vl = (1-8)u' (a',0?) + dw' (a'), Va':a' (a') >0 (MIX)

Additionally, the continuation payoffs have to be sustainable

v <w!(a') <o, Va' € A (AG)

2.1 Characterization of the lowest and highest payoff

To find v!' and 9 the following problem has to be solved:

Choose a = (a',a?), and w' (a') for all a* € A' such that v' is minimized

and 7' is maximized subject to the following constraints

o’ € BR® (o) (BR)

o' > (1-6)u' (a',0?) + 6w (a'),  Va' €A (ICy)

o' =(1-6)u' (a',0?) +ow' (a'),  Va':a'(a')>0 (MIX;)
vi > (1-6)u' (a',0®) + 6w’ (a'),  Va' €Al (IC2)

vl =(1-0)u' (a',0®) + 0w (a'), Va':a'(a') >0 (MIX)
vi<w!(a') <@,  Va'eA! (AG)

Note that something is missing in this problem: the weights we assign to the
minimization and maximization parts. In principle, there could be a trade-off
between these two parts of the problem. Fortunately, this is not the case. In fact,
for large enough values of § the problem can be separated into a maximization
problem and a minimization problem. To do that we need to partition constraint
(AG) into two separate constraints, since this constraint involves both v and



v, To do that we use the value of the (a) static Nash equilibrium n'. The

constraints we are going to use are

n' <w!(a') <o, Va' € A (AGy)

v <! (al) <nl', Val € A' (AG2)

Note that these two constraints are tighter than (AG). For example, no
single w! (-) can satisfy both at the same time unless w' (al) = n! for all

a' € A'. By imposing constraints that are tighter than (AG) we are being
conservative in our calculation of v! and #'. But it can be shown that as § — 1,
w! (al) can be chosen as close to v' and @' as desired, so this being conservative
is only apparent.

The two separate problems are stated below.

MAX PROBLEM

max
(ah,a?),wh(-)

subject to

o® € BR? (o) (BR)
o' > (1-0)u! (a,0%) + 6w’ (a'),  Va' €A (IC,)
o' =(1-0)u' (a',0®) + 6w (a'), Va':a'(a')>0 (MIX;,)
n' <w'(a') <v',  Va'e Al (AGy)

MIN PROBLEM
<al,$§?w1<~>yl @)
o € BR? (o) (BR)
v' > (1-6)u' (a',0?) + 6w (a'),  Va' €A (ICs)
vi=(1-68)u' (a',0?) + 6w’ (a'),  Va'(a')>0 (MIX3)
v <w'(a') <n',  Va'eA (AGy)



2.2 Solving for o'

As is usual when maximizing stuff with lots of constraints, we will ignore some
constraints and show later that the solution we found satisfies them anyway.
The constraints we will momentarily forget about are conditions (ICy) and a
part of (AG7). We will check later that they are satisfied. (/C7) will disappear
completely and we will only consider the following partial version of (AG1)

wt (al) <ot Val € A® (AG"y)

Note that only (BR) involves the actual mixed strategies by player 1. All
other constraints involve pure strategies. It is useful to rewrite the maximization
problem as a two step maximization

max max o' (3)
(al,a?):a?2€ BR?(al) wl(-)
subject to
ot =(1-6)u! (a17a2) + sw’ (al) , Ya' : ol (al) >0 (MIX;)

w' (a') <0, Va' € A' (AG’)

The inner maximization therefore takes (Oél,OéQ) as given and chooses the

function w! (+) so as to maximize v'. In a second step (a',a?) are chosen.

2.2.1 Inner maximization for a fixed (a',a?). Choosing w (-)

The inner maximization is

B w

subject to
ot =(1-06)u! (al,az) + dw! (al) , Val: ot (al) >0 (MIX;)
w! (al) <ot Vat e A (AG")

(a1,02) given

Now consider constraint (MIX7). If a; and s are fixed then the only thing
that helps in making the payoff #! as high as possible is choosing w'! (al) as large



as possible. However, if the fixed «; is a mixed strategy (i.e. it puts positive
probability on more than one pure action), then this constraint requires that
the highest w' (a') goes together with the smallest u' (a',a?). From (AGY),
the highest value we are allowed to choose for w! (al) is v!. Calculate a' as

~1 1

_ - 1 2
a = argal:arln(lar}bou (a',0?). (5)

For that value of @' we are allowed to choose w! (al) = ¢! and condition
(MI1X;) becomes

e, i o) o ®

Therefore, the result for the inner maximization is

_1 : 1 1 2
U(al,az) - al:arln(lal})>0u (a ' ) (7)

This equation makes it explicit that the value we found is for a fixed (a1, as)
and, therefore depends on (a, as).

2.2.2 Outer maximization: choosing (a!,a?)

The outer maximization requires that we find (al, a2) so as to maximize the

value we got for 17(1&17042)

max max 17(1&1 as) = max min
(al,a?):a?2€ BR?(al) wi(-) ’ (at,a?):a?2€ BR%(a') at:al(al)>0

u' (a,0?) (8)
Therefore the solution for the largest v; is

v = max min_ u' (a',0?) (9)
(at,a?):a?2€BR?(al) al:al(al)>0

2.2.3 The ignored conditions AG; and IC;

Now it is time to verify that our solution satisfies conditions AG; and IC;. We
already know that AG’; is satisfied, so the only thing we need for AG; is that

nt <w! (al) , Vol € A (10)
We know that ©; > n'. There are two cases:
1) ot = nt
2) ot > n!



In the first case we don’t have to prove anything since AG; holds trivially
and IC; holds because ! can be derived from a static Nash Equilibrium. Thus,
in the remainder we focus on case 2: o' > n!

AG; is satisfied
Use the IC; to solve for w' (a')

o' — (1= 6)ut (at,0?)

w! (a') < 5 (11)
Now consider what happens to the RHS as 6 — 1
ol — (1= 6)u! (a!, a2
i 0w (@he?) (12)
5—1 (S
Since we are considering case 2 we have that
o' — (1—0)u! (a',a?
}imlv ( ()5“ (@he?) g (13)

Then, for large enough ¢ it is always possible to choose w! (al) such that
w! (al) >nl.

IC; is satisfied
What about IC;7 We are going to look for the value of § so that the IC is
satisfied no matter what the value of w' (al) is

o' > (1-0)u! (al,0®) +ow' (a'),  Va' € Al (ICy)

Since w! (a') < ©', by AG’y, this equation will automatically hold for any &
,

when o' > u' (a*, @?). Therefore, consider those a' for which u! (a',a?) > v'.

Rewrite IC; to get
ot —ul (al,o;) >4 [wl (al) —ut (al,on)] , Vo' € A! (14)
Since we have negative numbers on both sides it is convenient to write the
inequality as

§[u' (a',0?) —w' (a')] > u' (a',0®) — 2" (15)

Divide by u! (al,aQ) — w! (al)

ul (al,a2) — 7!
o>

= U (@ a?) —wl (@)

Define 0,1 as the value for ¢ such that this equation is satisfied with equality
for a specific al.
Then take

(16)

§ = max d,1 (17)
ale Al

Thus, for § > ¢ the IC; is satisfied.



2.3 Solving for v!

We have to solve the minimization problem. The strategy will be the same as for
the maximization problem above, proceeding in two steps. The only difference
is that we also include ICy into the inner minimization.

1

min min v
(al,a?):a?2€ BR2(al) wl(-)
subject to
vi>(1-9)u! (al,az) + dw! (al) , Val € A! (ICy)
vi=(1-96)u' (a',0?) + 6w’ (a'), va' (a') >0 (MIXs)
vi <! (al) , Val € Al (AG’9)

2.3.1 Inner minimization

min v'
wi()
subject to
vi> (1 -9)u! (al,a2) + dw! (al) , Vol € A' (IC2)
vi=(1-¢6)ut (al,OzQ) + dw! (al) , Vol (al) >0 (MIXs3)
v' <w!(a'), Vol € A! (AG’9)

(a1, a0) given

We want w' (al) to be as small as possible. By AG’y the smallest choice for

w! (al) is v!. We want the RHS of IC to be as small as possible. This equation

will bind for the first time when u' (al, a2) is biggest.

vi=(1-9) mquxul (a*,a?) + ov' (18)
Therefore,

Y%al’og) = n}lal,xul (a*,0?) (19)



2.3.2 Outer minimization

By the outer minimization

v = min
(al,a?):a?2€ BR?(al')

1
Y(ozl,oﬁ) (20)
Using the result of the inner minimization

1

vi= maxu' (a', a?) (21)

min
(al,a?):a2€ BR?(a') a!

AG, is satisfied by a similar argument as the one we had before.

2.4 Set of equilibrium payoffs

By virtue of public randomization, the set of equilibrium payoffs is convex.
Therefore, by finding o' and v! we already know what the entire set looks like.
Let’s now think about how ! and v! compare to other values we can calculate
from the static game.

2.4.1 o' vs Pure and Mixed Stackelberg

The relationship is

ps' < o' < ms! (22)

Start with the definition of o4

Ty = u' (a*,a?) (23)

max min
(al,a?):a2€ BR2(al) al:al(al)>0
Now impose the additional constraint that o' is a pure strategy, i.e. it has
to put positive probability on only one element of A'. By adding an additional
constraint this calculation can only go down. Therefore,
1

vy > max min v (a ,a2) (24)
(a',a?):a2€BR?(a') a'

The inner minimization is over a single point. Thus,

_ 1 1 2\ _ 1
o1 2 (al,az):roc[lza€}<BR2(a1)u (0: @ ) b (25)

In consequence,

pst <y (26)

Now consider the definition of the mixed Stackelberg payoff

m51 - (a17a2):Io¢nZ%XBR2(Ozl) Zlul (al’ a2) al (al) (27)



When compared to v1, it is evident that the outer maximization is the same.
Therefore, ms' > v, iff

Zul (al,a2) o' (a')>  min o' (al,ozz) (28)

al:al(a')>0

Note that terms for which o' (al) = 0 drop out of the RHS because they
are multiplied by this number.

Zlul (al,a2) ot (al) = Z ul (al,az) at (al) >  min ot (al,az)

al:al(a®)>0 atia’(a’)>0
(29)
This last inequality is true because an average of a group of numbers is
always at least as great as the minimum of that group of numbers. Hence,

v < ms' (30)

2.4.2 v'! vs Minmax and Static Nash

The relationship is

m' <v! <n! (31)

Consider the definition of the minmax

m! = min max u! (al,ozz)
a2 al

Now additionally restrict @ to be a best response to o' in the outer mini-
mization. By doing this the value cannot get smaller. Thus,

< maxu' (a',0?) = v! (32)

m- < min
(al,a?):a?€ BR?(al) al!

The comparison with the static Nash was done before. Therefore,

m! < yl < nt (33)

3 Examples

This section calculates all the above values in examples. For convenience, all
the formulas are grouped together in the following table



Pure Stackelberg pst = mMaX(ql a?):a?cBR2(al) ul (al, az)
T 2

Mixed Stackelberg mst = MaX(a!,a2):a2eBR2(al) Zal u1 (a ) al (al)

Minmax m! = min,2 max, u' (a' oz2)
Best dynamic payoff | 01 = max(a1 o2):02€ BR?(a1) Milg1:q1(a1) Sout ( , o
Worst dynamic payoff vl = MiN(a1 02):02€BR2(al) MAXq! U (al, o

In all examples the row player is the long run player and the column player
is a short run player.

3.1 First Example

Consider the following stage game.

L[ R
U 20| -1-1
D30 L1

Static Nash

The static Nash Equilibrium is (D, R) and yields a payoff n! =1
Pure Stackelberg

Action | BR? | payoff
U L 2
D R 1

ps' = max {1,2} =2

Mixed Stackelberg

Action BR? payoff
U or mix p > % L 2
mix p = % L, R, mix | 2, 1, [0,2.5]
D or mix p < % R 1

ms' = max {1,2,[0,2.5]} = 2.5

Minmax

Action | BR? | payoff
L D 3
mix D 1, 3]
R D 1




m' =min {3,[1,3],1} = 1

Best dynamic payoff

Action BR? worst in support
U or mix p > % L 2
mix p = £ L, R, mix 2, -1, [-1,2]
D or mix p < % R 1

77 =max{1,2,[-1,2]} =2

Worst dynamic payoff
Since n! = m! = 1 and m! <v! < n! it has to be that v! = 1. It is equal to
the minmax because there are no dominated actions for player 2.

Summing up,

Mixed Stackelberg ms' =2.5
Best dynamic payoff U1 =2
Pure Stackelberg psl =

Static Nash nt =
Worst dynamic payoff vi=1
Minmax m! =1

Find 0
To support v; = 2 the following IC; has to hold

2> (1-8)3+ 01

which implies
- 1
0>6==
- 2
Which strategy profile supports ©; = 2 for § > §7
Play (U, L). If anyone ever deviates play (D, R) forever.

Which strategy profile supports v! =1 for § > 6?7

Play (D, R) always. This is an equilibrium for all discount factors.

11



3.2 Second Example (Final 2001)

Consider the following stage game.

L [ R
U (0,032
D23 11

Static Nash

There are three static Nash Equilibria: (U, R), (D, L) and a mixed equilib-

rium (%, %) This last equilibrium yields the lowest payoff n! = 1.5
Pure Stackelberg

Action | BR? | payoff
U R 3
D L 2

ps' =max{2,3} =3

Mixed Stackelberg

Action BR? payoff
U or mix p > % R 3
mix p = % L, R, mix | 1, 2, [1,2]
D or mix p < % L 2

ms' = max {3,2,[1,2]} = 3

Minmax

Action BR? payoff

L or mix ¢ > 3 D (1.5,2]
mix ¢ = 3 U,D,mix 1.5

R or mix ¢ < 3 U (1.5, 3]

m' = min {(1.5,2], (1.5,3], 1.5} = 1.5

Best dynamic payoff
Since

12



Worst dynamic payoff
Since

15=ml<vi<n'=15

Summing up,

Mixed Stackelberg mst =3
Best dynamic payoft v =3
Pure Stackelberg pst =3
Static Nash nt=1.5
Worst dynamic payoff | v = 1.5
Minmax m! =15

Find ¢

To support 91 = 3, § can be anything since it can be obtained by a Nash
Equilibrium of the static game. Therefore, § = 0.

Which strategy profile supports ©; = 3 for § > §7
Play (U, R) always.
Which strategy profile supports v! = 1.5 for § > §?
Play (%, %) always.
3.3 Third Example (Final 2003)
Consider the following stage game.
L M R S

U 1,1 54 15 00
D 35 64 21 00

Static Nash

(D, L) is the unique static Nash equilibrium (the only action profile that
survives iterated elimination of strictly dominated actions), n! = 3
Pure Stackelberg

13



Action | BR? | payoff
U R 1
D L 3

ps' =max{1,3} =3

Mixed Stackelberg

Action BR? payoff
U or mix p > 2 R [1,1.25)

p=3 any mix of R and M (including pure) | [1.25,5.25]
mix p € (1,2) M (5.25,5.75)

p=1 any mix of L and M (including pure) | [2.5,5.75]
D or mix p < 1 L (2.5, 3]

ms' = max {[1,1.25), [1.25,5.25], (5.25,5.75) , [2.5,5.75] , (2.5, 3]} = 5.75

Minmax

The minmax is clearly when player 2 plays S and forces player 1 to accept a
payoff of 0. The normal form of the game has the best responses on bold. Using

these values to calculate m!

m! = min {3,6,2,0} =0
Since 0 is the lowest payoff in the matrix we do not have to worry about any
mixed strategy giving player 1 a lower payoff.

Best dynamic payoff

Action BR? worst in support
U or mix p > % R 1

p=13 R, M, mix 1,5,(1,5)
mix p € (i, %) M 5

pP=1 L, M, mix 1,5,(1,5)
D or mix p < i L 1

o' = max{1,5,(1,5)} =5

Worst dynamic payoff
Since



we actually need to do a calculation here. v! is the "constrained" minmax,
where "constrained" means that we don’t allow the column player to use dom-
inated actions when minmaxing player 1. Thus, we get rid of S because it is
strictly dominated by everything else. We can’t get rid of any other pure strate-
gies because L, M, R are best responses to something. If we consider only pure

strategies for player 2 then
v! =min {3,6,2} =2

Why don’t mixed strategies help to get a lower payoff in this case? It is
because player 1 has a strictly dominating strategy in D once S is removed.
Thus, he is assured to get at least 2 no matter what player 2 does.

Summing up,

Mixed Stackelberg ms! = 5.75
Best dynamic payoff v1=5
Pure Stackelberg pst =3
Static Nash nt =3
Worst dynamic payoff vl =
Minmax m! =0

Find ¢

To support ¥; = 5, with a v! threat, the incentive compatibility constraint
for player 1 requires

5>(1—10)6+ 42
Hence,

1

> =
0>9 1

With Nash threats we get § = %
Which strategy profile supports ; = 5 for 6 > § = %?

Play (%, %) and M. If the resulting play is (U, M) start over. If the result
is (D, M) start over with probability 7 and play static Nash with probability

1—m, where 7 is such that player 1 gets a payoff of 5 even though he temporarily
gets 6, i.e.

5=(1—08)6+0[r5+ (1 —m)3]
361
= "9

If anybody deviates play static Nash forever. SR does not deviate because
he is playing a best response. LR does not deviate because IC; is satisfied.
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