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1 Notation and De�nitions

Actions in the stage game for player i: ai 2 Ai �nite
Mixed actions for player i: �i : Ai ! [0; 1] and

P
ai2Ai �i

�
ai
�
= 1

Patience parameter: � 2 [0; 1)
Best and worst dynamic payo¤ for player 1: �v1; v

¯
1

Equilibrium payo¤ for player 1 beginning next period if action a1 was se-
lected: w1

�
a1
�
. In general, we can think of the function w (�) as a function that

maps actions into real numbers. w : A1 ! R.
Static Nash equilibrium payo¤ to player 1:

n1 = u1
�
�1; �2

�
such that �1 2 BR1

�
�2
�
^ �2 2 BR2

�
�1
�

Pure Stackelberg payo¤ to player 1:

ps1 = max
(a1;�2):�22BR2(a1)

u1
�
a1; �2

�
Mixed Stackelberg payo¤ to player 1:

ms1 = max
(�1;�2):�22BR2(�1)

X
a1

u1
�
a1; �2

�
�1
�
a1
�

Minmax payo¤ to player 1:

m1 = min
�2
max
a1

u1
�
a1; �2

�
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2 Characterization of equilibrium payo¤s

For v1 to be the equilibrium payo¤ associated to a �xed �1, the following two
equations have to be satis�ed

v1 � (1� �)u1
�
a1; �2

�
+ �w1

�
a1
�
; 8a1 2 A1 (IC)

and

v1 = (1� �)u1
�
a1; �2

�
+ �w1

�
a1
�
; 8a1 : �1

�
a1
�
> 0 (MIX)

Additionally, the continuation payo¤s have to be sustainable

v
¯
1 � w1

�
a1
�
� �v1; 8a1 2 A1 (AG)

2.1 Characterization of the lowest and highest payo¤

To �nd v
¯
1 and �v1 the following problem has to be solved:

Choose � =
�
�1; �2

�
, and w1

�
a1
�
for all a1 2 A1 such that v

¯
1 is minimized

and �v1 is maximized subject to the following constraints

�2 2 BR2
�
�1
�

(BR)

�v1 � (1� �)u1
�
a1; �2

�
+ �w1

�
a1
�
; 8a1 2 A1 (IC1)

�v1 = (1� �)u1
�
a1; �2

�
+ �w1

�
a1
�
; 8a1 : �1

�
a1
�
> 0 (MIX1)

v
¯
1 � (1� �)u1

�
a1; �2

�
+ �w1

�
a1
�
; 8a1 2 A1 (IC2)

v
¯
1 = (1� �)u1

�
a1; �2

�
+ �w1

�
a1
�
; 8a1 : �1

�
a1
�
> 0 (MIX2)

v
¯
1 � w1

�
a1
�
� �v1; 8a1 2 A1 (AG)

Note that something is missing in this problem: the weights we assign to the
minimization and maximization parts. In principle, there could be a trade-o¤
between these two parts of the problem. Fortunately, this is not the case. In fact,
for large enough values of � the problem can be separated into a maximization
problem and a minimization problem. To do that we need to partition constraint
(AG) into two separate constraints, since this constraint involves both v

¯
1 and
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�v1. To do that we use the value of the (a) static Nash equilibrium n1. The
constraints we are going to use are

n1 � w1
�
a1
�
� �v1; 8a1 2 A1 (AG1)

v
¯
1 � w1

�
a1
�
� n1; 8a1 2 A1 (AG2)

Note that these two constraints are tighter than (AG). For example, no
single w1 (�) can satisfy both at the same time unless w1

�
a1
�
= n1 for all

a1 2 A1. By imposing constraints that are tighter than (AG) we are being
conservative in our calculation of v

¯
1 and �v1. But it can be shown that as � ! 1,

w1
�
a1
�
can be chosen as close to v

¯
1 and �v1 as desired, so this being conservative

is only apparent.
The two separate problems are stated below.

MAX PROBLEM

max
(�1;�2);w1(�)

�v1 (1)

subject to

�2 2 BR2
�
�1
�

(BR)

�v1 � (1� �)u1
�
a1; �2

�
+ �w1

�
a1
�
; 8a1 2 A1 (IC1)

�v1 = (1� �)u1
�
a1; �2

�
+ �w1

�
a1
�
; 8a1 : �1

�
a1
�
> 0 (MIX1)

n1 � w1
�
a1
�
� �v1; 8a1 2 A1 (AG1)

MIN PROBLEM

min
(�1;�2);w1(�)

v
¯
1 (2)

�2 2 BR2
�
�1
�

(BR)

v
¯
1 � (1� �)u1

�
a1; �2

�
+ �w1

�
a1
�
; 8a1 2 A1 (IC2)

v
¯
1 = (1� �)u1

�
a1; �2

�
+ �w1

�
a1
�
; 8�1

�
a1
�
> 0 (MIX2)

v
¯
1 � w1

�
a1
�
� n1; 8a1 2 A1 (AG2)
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2.2 Solving for �v1

As is usual when maximizing stu¤ with lots of constraints, we will ignore some
constraints and show later that the solution we found satis�es them anyway.
The constraints we will momentarily forget about are conditions (IC1) and a
part of (AG1). We will check later that they are satis�ed. (IC1) will disappear
completely and we will only consider the following partial version of (AG1)

w1
�
a1
�
� �v1; 8a1 2 A1 (AG�1)

Note that only (BR) involves the actual mixed strategies by player 1. All
other constraints involve pure strategies. It is useful to rewrite the maximization
problem as a two step maximization

max
(�1;�2):�22BR2(�1)

max
w1(�)

�v1 (3)

subject to

�v1 = (1� �)u1
�
a1; �2

�
+ �w1

�
a1
�
; 8a1 : �1

�
a1
�
> 0 (MIX1)

w1
�
a1
�
� �v1; 8a1 2 A1 (AG�1)

The inner maximization therefore takes
�
�1; �2

�
as given and chooses the

function w1 (�) so as to maximize �v1. In a second step
�
�1; �2

�
are chosen.

2.2.1 Inner maximization for a �xed
�
�1; �2

�
. Choosing w (�)

The inner maximization is

max
w1(�)

�v1 (4)

subject to

�v1 = (1� �)u1
�
a1; �2

�
+ �w1

�
a1
�
; 8a1 : �1

�
a1
�
> 0 (MIX1)

w1
�
a1
�
� �v1; 8a1 2 A1 (AG�1)

(�1; �2) given

Now consider constraint (MIX1). If �1 and �2 are �xed then the only thing
that helps in making the payo¤ �v1 as high as possible is choosing w1

�
a1
�
as large
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as possible. However, if the �xed �1 is a mixed strategy (i.e. it puts positive
probability on more than one pure action), then this constraint requires that
the highest w1

�
a1
�
goes together with the smallest u1

�
a1; �2

�
. From (AG01),

the highest value we are allowed to choose for w1
�
a1
�
is �v1. Calculate ~a1 as

~a1 = arg min
a1:�1(a1)>0

u1
�
a1; �2

�
: (5)

For that value of ~a1 we are allowed to choose w1
�
a1
�
= �v1 and condition

(MIX1) becomes

�v1 = (1� �) min
a1:�1(a1)>0

u1
�
a1; �2

�
+ ��v1 (6)

Therefore, the result for the inner maximization is

�v1(�1;�2) = min
a1:�1(a1)>0

u1
�
a1; �2

�
(7)

This equation makes it explicit that the value we found is for a �xed (�1; �2)
and, therefore depends on (�1; �2).

2.2.2 Outer maximization: choosing
�
�1; �2

�
The outer maximization requires that we �nd

�
�1; �2

�
so as to maximize the

value we got for �v1(�1;�2)

max
(�1;�2):�22BR2(�1)

max
w1(�)

�v1(�1;�2) = max
(�1;�2):�22BR2(�1)

min
a1:�1(a1)>0

u1
�
a1; �2

�
(8)

Therefore the solution for the largest �v1 is

�v1 = max
(�1;�2):�22BR2(�1)

min
a1:�1(a1)>0

u1
�
a1; �2

�
(9)

2.2.3 The ignored conditions AG1 and IC1

Now it is time to verify that our solution satis�es conditions AG1 and IC1. We
already know that AG�1 is satis�ed, so the only thing we need for AG1 is that

n1 � w1
�
a1
�
; 8a1 2 A1 (10)

We know that �v1 � n1. There are two cases:
1) �v1 = n1

2) �v1 > n1
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In the �rst case we don�t have to prove anything since AG1 holds trivially
and IC1 holds because �v1 can be derived from a static Nash Equilibrium. Thus,
in the remainder we focus on case 2: �v1 > n1

AG1 is satis�ed
Use the IC1 to solve for w1

�
a1
�

w1
�
a1
�
�
�v1 � (1� �)u1

�
a1; �2

�
�

(11)

Now consider what happens to the RHS as � ! 1

lim
�!1

�v1 � (1� �)u1
�
a1; �2

�
�

= �v1 (12)

Since we are considering case 2 we have that

lim
�!1

�v1 � (1� �)u1
�
a1; �2

�
�

= �v1 > n1 (13)

Then, for large enough � it is always possible to choose w1
�
a1
�
such that

w1
�
a1
�
� n1.

IC1 is satis�ed
What about IC1? We are going to look for the value of � so that the IC is

satis�ed no matter what the value of w1
�
a1
�
is

�v1 � (1� �)u1
�
a1; �2

�
+ �w1

�
a1
�
; 8a1 2 A1 (IC1)

Since w1
�
a1
�
� �v1; by AG�1; this equation will automatically hold for any �

when �v1 � u1
�
a1; �2

�
. Therefore, consider those a1 for which u1

�
a1; �2

�
> �v1.

Rewrite IC1 to get

�v1 � u1
�
a1; �2

�
� �

�
w1
�
a1
�
� u1

�
a1; �2

��
; 8a1 2 A1 (14)

Since we have negative numbers on both sides it is convenient to write the
inequality as

�
�
u1
�
a1; �2

�
� w1

�
a1
��
� u1

�
a1; �2

�
� �v1 (15)

Divide by u1
�
a1; �2

�
� w1

�
a1
�

� �
u1
�
a1; �2

�
� �v1

u1 (a1; �2)� w1 (a1) (16)

De�ne ��a1 as the value for � such that this equation is satis�ed with equality
for a speci�c a1.
Then take

�� = max
a12A1

��a1 (17)

Thus, for � � �� the IC1 is satis�ed.
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2.3 Solving for v
¯
1

We have to solve the minimization problem. The strategy will be the same as for
the maximization problem above, proceeding in two steps. The only di¤erence
is that we also include IC2 into the inner minimization.

min
(�1;�2):�22BR2(�1)

min
w1(�)

v
¯
1

subject to

v
¯
1 � (1� �)u1

�
a1; �2

�
+ �w1

�
a1
�
; 8a1 2 A1 (IC2)

v
¯
1 = (1� �)u1

�
a1; �2

�
+ �w1

�
a1
�
; 8�1

�
a1
�
> 0 (MIX2)

v
¯
1 � w1

�
a1
�
; 8a1 2 A1 (AG�2)

2.3.1 Inner minimization

min
w1(�)

v
¯
1

subject to

v
¯
1 � (1� �)u1

�
a1; �2

�
+ �w1

�
a1
�
; 8a1 2 A1 (IC2)

v
¯
1 = (1� �)u1

�
a1; �2

�
+ �w1

�
a1
�
; 8�1

�
a1
�
> 0 (MIX2)

v
¯
1 � w1

�
a1
�
; 8a1 2 A1 (AG�2)

(�1; �2) given

We want w1
�
a1
�
to be as small as possible. By AG�2 the smallest choice for

w1
�
a1
�
is v
¯
1. We want the RHS of IC2 to be as small as possible. This equation

will bind for the �rst time when u1
�
a1; �2

�
is biggest.

v
¯
1 = (1� �)max

a1
u1
�
a1; �2

�
+ �v
¯
1 (18)

Therefore,

v
¯
1
(�1;�2) = max

a1
u1
�
a1; �2

�
(19)
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2.3.2 Outer minimization

By the outer minimization

v
¯
1 = min

(�1;�2):�22BR2(�1)
v
¯
1
(�1;�2) (20)

Using the result of the inner minimization

v
¯
1 = min

(�1;�2):�22BR2(�1)
max
a1

u1
�
a1; �2

�
(21)

AG2 is satis�ed by a similar argument as the one we had before.

2.4 Set of equilibrium payo¤s

By virtue of public randomization, the set of equilibrium payo¤s is convex.
Therefore, by �nding �v1 and v

¯
1 we already know what the entire set looks like.

Let�s now think about how �v1 and v
¯
1 compare to other values we can calculate

from the static game.

2.4.1 �v1 vs Pure and Mixed Stackelberg

The relationship is

ps1 � �v1 � ms1 (22)

Start with the de�nition of �v1

�v1 = max
(�1;�2):�22BR2(�1)

min
a1:�1(a1)>0

u1
�
a1; �2

�
(23)

Now impose the additional constraint that �1 is a pure strategy, i.e. it has
to put positive probability on only one element of A1. By adding an additional
constraint this calculation can only go down. Therefore,

�v1 � max
(a1;�2):�22BR2(a1)

min
a1
u1
�
a1; �2

�
(24)

The inner minimization is over a single point. Thus,

�v1 � max
(a1;�2):�22BR2(a1)

u1
�
a1; �2

�
= ps1 (25)

In consequence,

ps1 � �v1 (26)

Now consider the de�nition of the mixed Stackelberg payo¤

ms1 = max
(�1;�2):�22BR2(�1)

X
a1

u1
�
a1; �2

�
�1
�
a1
�

(27)
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When compared to �v1, it is evident that the outer maximization is the same.
Therefore, ms1 � �v1 i¤X

a1

u1
�
a1; �2

�
�1
�
a1
�
� min

a1:�1(a1)>0
u1
�
a1; �2

�
(28)

Note that terms for which �1
�
a1
�
= 0 drop out of the RHS because they

are multiplied by this number.

X
a1

u1
�
a1; �2

�
�1
�
a1
�
=

X
a1:�1(a1)>0

u1
�
a1; �2

�
�1
�
a1
�
� min

a1:�1(a1)>0
u1
�
a1; �2

�
(29)

This last inequality is true because an average of a group of numbers is
always at least as great as the minimum of that group of numbers. Hence,

�v1 � ms1 (30)

2.4.2 v
¯
1 vs Minmax and Static Nash

The relationship is

m1 � v
¯
1 � n1 (31)

Consider the de�nition of the minmax

m1 = min
�2
max
a1

u1
�
a1; �2

�
Now additionally restrict �2 to be a best response to �1 in the outer mini-

mization. By doing this the value cannot get smaller. Thus,

m1 � min
(�1;�2):�22BR2(�1)

max
a1

u1
�
a1; �2

�
= v
¯
1 (32)

The comparison with the static Nash was done before. Therefore,

m1 � v
¯
1 � n1 (33)

3 Examples

This section calculates all the above values in examples. For convenience, all
the formulas are grouped together in the following table
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Pure Stackelberg ps1 = max(a1;�2):�22BR2(a1) u
1
�
a1; �2

�
Mixed Stackelberg ms1 = max(�1;�2):�22BR2(�1)

P
a1 u

1
�
a1; �2

�
�1
�
a1
�

Minmax m1 = min�2 maxa1 u
1
�
a1; �2

�
Best dynamic payo¤ �v1 = max(�1;�2):�22BR2(�1)mina1:�1(a1)>0 u

1
�
a1; �2

�
Worst dynamic payo¤ v

¯
1 = min(�1;�2):�22BR2(�1)maxa1 u

1
�
a1; �2

�
In all examples the row player is the long run player and the column player

is a short run player.

3.1 First Example

Consider the following stage game.

L R
U 2,0 -1,-1
D 3,0 1,1

Static Nash

The static Nash Equilibrium is (D;R) and yields a payo¤ n1 = 1
Pure Stackelberg

Action BR2 payo¤
U L 2
D R 1

ps1 = max f1; 2g = 2

Mixed Stackelberg

Action BR2 payo¤
U or mix p > 1

2 L 2
mix p = 1

2 L, R, mix 2, 1, [0; 2:5]
D or mix p < 1

2 R 1

ms1 = max f1; 2; [0; 2:5]g = 2:5

Minmax

Action BR2 payo¤
L D 3
mix D [1; 3]
R D 1
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m1 = min f3; [1; 3] ; 1g = 1

Best dynamic payo¤

Action BR2 worst in support
U or mix p > 1

2 L 2
mix p = 1

2 L, R, mix 2, -1, [�1; 2]
D or mix p < 1

2 R 1

�v1 = max f1; 2; [�1; 2]g = 2

Worst dynamic payo¤
Since n1 = m1 = 1 and m1 �v

¯
1 � n1 it has to be that v

¯
1 = 1. It is equal to

the minmax because there are no dominated actions for player 2.

Summing up,

Mixed Stackelberg ms1 = 2:5
Best dynamic payo¤ �v1 = 2
Pure Stackelberg ps1 = 2
Static Nash n1 = 1

Worst dynamic payo¤ v
¯
1 = 1

Minmax m1 = 1

Find �
To support �v1 = 2 the following IC1 has to hold

2 � (1� �) 3 + �1

which implies

� � �� = 1

2

Which strategy pro�le supports �v1 = 2 for � � ��?

Play (U;L). If anyone ever deviates play (D;R) forever.

Which strategy pro�le supports v
¯
1 = 1 for � � ��?

Play (D;R) always. This is an equilibrium for all discount factors.
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3.2 Second Example (Final 2001)

Consider the following stage game.

L R
U 0,0 3,2
D 2,3 1,1

Static Nash

There are three static Nash Equilibria: (U;R) ; (D;L) and a mixed equilib-
rium

�
1
2 ;

1
2

�
. This last equilibrium yields the lowest payo¤ n1 = 1:5

Pure Stackelberg

Action BR2 payo¤
U R 3
D L 2

ps1 = max f2; 3g = 3

Mixed Stackelberg

Action BR2 payo¤
U or mix p > 1

2 R 3
mix p = 1

2 L, R, mix 1, 2, [1; 2]
D or mix p < 1

2 L 2

ms1 = max f3; 2; [1; 2]g = 3

Minmax

Action BR2 payo¤
L or mix q > 1

2 D (1:5; 2]
mix q = 1

2 U,D,mix 1.5
R or mix q < 1

2 U (1:5; 3]

m1 = min f(1:5; 2]; (1:5; 3]; 1:5g = 1:5

Best dynamic payo¤
Since

3 = ps1 � �v1 � ms1 = 3
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�v1 = 3

Worst dynamic payo¤
Since

1:5 = m1 � v
¯
1 � n1 = 1:5

v
¯
1 = 1:5

Summing up,

Mixed Stackelberg ms1 = 3
Best dynamic payo¤ �v1 = 3
Pure Stackelberg ps1 = 3
Static Nash n1 = 1:5

Worst dynamic payo¤ v
¯
1 = 1:5

Minmax m1 = 1:5

Find �
To support �v1 = 3, � can be anything since it can be obtained by a Nash

Equilibrium of the static game. Therefore, �� = 0.

Which strategy pro�le supports �v1 = 3 for � � ��?

Play (U;R) always.

Which strategy pro�le supports v
¯
1 = 1:5 for � � ��?

Play
�
1
2 ;

1
2

�
always.

3.3 Third Example (Final 2003)

Consider the following stage game.

L M R S
U 1,1 5,4 1,5 0,0
D 3,5 6,4 2,1 0,0

Static Nash

(D;L) is the unique static Nash equilibrium (the only action pro�le that
survives iterated elimination of strictly dominated actions), n1 = 3
Pure Stackelberg
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Action BR2 payo¤
U R 1
D L 3

ps1 = max f1; 3g = 3

Mixed Stackelberg

Action BR2 payo¤
U or mix p > 3

4 R [1; 1:25)
p = 3

4 any mix of R and M (including pure) [1:25; 5:25]
mix p 2

�
1
4 ;

3
4

�
M (5:25; 5:75)

p = 1
4 any mix of L and M (including pure) [2:5; 5:75]

D or mix p � 1
4 L (2:5; 3]

ms1 = max f[1; 1:25); [1:25; 5:25] ; (5:25; 5:75) ; [2:5; 5:75] ; (2:5; 3]g = 5:75

Minmax

The minmax is clearly when player 2 plays S and forces player 1 to accept a
payo¤ of 0. The normal form of the game has the best responses on bold. Using
these values to calculate m1

m1 = min f3; 6; 2; 0g = 0

Since 0 is the lowest payo¤ in the matrix we do not have to worry about any
mixed strategy giving player 1 a lower payo¤.

Best dynamic payo¤

Action BR2 worst in support
U or mix p > 3

4 R 1
p = 3

4 R, M, mix 1; 5; (1; 5)
mix p 2

�
1
4 ;

3
4

�
M 5

p = 1
4 L, M, mix 1; 5; (1; 5)

D or mix p � 1
4 L 1

�v1 = max f1; 5; (1; 5)g = 5

Worst dynamic payo¤
Since

0 = m1 < v
¯
1 < n1 = 3
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we actually need to do a calculation here. v
¯
1 is the "constrained" minmax,

where "constrained" means that we don�t allow the column player to use dom-
inated actions when minmaxing player 1. Thus, we get rid of S because it is
strictly dominated by everything else. We can�t get rid of any other pure strate-
gies because L, M, R are best responses to something. If we consider only pure
strategies for player 2 then

v
¯
1 = min f3; 6; 2g = 2

Why don�t mixed strategies help to get a lower payo¤ in this case? It is
because player 1 has a strictly dominating strategy in D once S is removed.
Thus, he is assured to get at least 2 no matter what player 2 does.

Summing up,

Mixed Stackelberg ms1 = 5:75
Best dynamic payo¤ �v1 = 5
Pure Stackelberg ps1 = 3
Static Nash n1 = 3

Worst dynamic payo¤ v
¯
1 = 2

Minmax m1 = 0

Find �
To support �v1 = 5, with a v¯

1 threat, the incentive compatibility constraint
for player 1 requires

5 � (1� �) 6 + �2
Hence,

� � �� = 1

4

With Nash threats we get �� = 1
3 .

Which strategy pro�le supports �v1 = 5 for � � �� = 1
3?

Play
�
1
2 ;

1
2

�
and M . If the resulting play is (U;M) start over. If the result

is (D;M) start over with probability � and play static Nash with probability
1��, where � is such that player 1 gets a payo¤ of 5 even though he temporarily
gets 6, i.e.

5 = (1� �) 6 + � [�5 + (1� �) 3]

� =
3� � 1
2�

If anybody deviates play static Nash forever. SR does not deviate because
he is playing a best response. LR does not deviate because IC1 is satis�ed.
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