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1 Introduction

As you are probably aware from course 202A (or any other course featuring
RBC models), a large part of contemporary Macroeconomics is concerned with
formulating dynamic general equilibrium models that do well when confronted
to data. Most of the time, data comes from the post-war period in the US.
Usually, this data is about quantities, not prices. I guess this is because it

is quantities that go into utility functions and make people happy. In general,
the RBC literature measures its success by comparing the autocorrelations,
covariances and volatilities of consumption, investment, output, labor input,
etc. generated by the model to these same statistics in the real world data.1

One problem with real quantities is that they are very difficult to measure.
Consumption, investment, hours worked and output have to be estimated by
using incomplete data or surveys. These series are usually not available in
frequencies lower than a quarter and have to be revised frequently. On the other
hand, price data is fairly easy to measure and available at higher frequencies.
Particularly, prices for assets traded in a stock or bond market can be measured
very easily and are available even at daily frequencies or sometimes even at
intra-day frequencies. It makes sense then to subject our models to the test of
predicting price data correctly.
∗Note to the typical reader: You probably couldn’t care less about asset pricing. After all,

you are enrolled in a Game Theory course. But even if you are not particularly interested in
asset pricing or finance right now, don’t throw away these notes just yet. It is highly probable
that you will encounter asset pricing at some time during your PhD at UCLA. And it is even
more likely that some professor will simply assume that you have seen it before. In that case
it may be useful to read these notes again.

1One exception is the international RBC literature where one of the targeted variables is
the exchange rate, which is a price.
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The RBC literature restricts utility functions to lie in the CES (power utility)
family. The reason for doing this is that it is the only class of preferences
consistent with a balanced growth path. What happens if we use CES utility
functions to predict equity and bond prices? The answer was given by Mehra
and Prescott (1985) who were the first ones to state the Equity Premium Puzzle.

The Equity Premium Puzzle states that the excess return of the stock market
over a risk free rate is incompatible with a representative agent model with a
power utility function for "reasonable" values of risk aversion. By reasonable
values of risk aversion low values are meant, possibly a value lower than one.
Since 1985, there has been some progress in fitting models to financial data.
Kocherlakota (1996) and Campbell (2000) provide very good surveys of these
attempts.

2 How does the market react to good news?2

This section constructs a model of an endowment economy and argues that
the risk aversion parameter should be smaller than 1 if we expect the stock
market to rise with good news. In a CES function the risk aversion parameter is
tied together with the intertemporal elasticity of substitution, which measures
how willing consumers are to substitute consumption across time. It is the
interpretation of this parameter as the intertemporal elasticity that drives this
result, not the interpretation of risk aversion.

2.1 A 2 period example

Consider a deterministic two period example. Call the discount factor δ < 1. In
a CES function the same parameter can be interpreted as the risk-aversion pa-
rameter and the inverse of the intertemporal elasticity of substitution (IES). In
this example there is no uncertainty, and therefore, it is reasonable to interpret
it as the IES.
The model has a representative agent who maximizes a time separable utility

function

max
c1,c2

u (c1) + δu (c2) (1)

subject to a budget constraint

c1 + pc2 ≤ I ≡ ω1 + pω2 (2)

2This entire section is based on David Levine’s lecture notes on Decision Theory.
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where p is the price of period 2 consumption in terms of period 1 consump-
tion, I is lifetime income, which is made out of endowments ω1 in period 1 and
ω2 in period 2.
Assuming an interior solution, the first order condition for the consumer is:

δu0 (c2)
u0 (c1)

= p (3)

Consider a CES function

U = c1−γ1 + δc1−γ2 (4)

Then, the first order condition becomes

δ

µ
c2
c1

¶−γ
= p (5)

Solve for c1 in terms of c2 and p to get

c1 =
³p
δ

´ 1
γ

c2 (6)

Plug this into the budget constraint to get³p
δ

´ 1
γ

c2 + pc2 = I (7)

Thus, solving for consumption, we have

c2 =
I

p+
¡
p
δ

¢ 1
γ

(8)

and

c1 =

¡
p
δ

¢ 1
γ I

p+
¡
p
δ

¢ 1
γ

(9)

Notice that for γ = 1 (the Cobb-Douglas case) we have

c2 =
δ

1 + δ

I

p
(10)

and

c1 =
1

1 + δ
I (11)

Now fix ω1 = 1 and consider ω2 = g
³
= ω2

ω1

´
. At what prices is autarky,

i.e. c1 = ω1 = 1 and c2 = ω2 = g an equilibrium?
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p =
δu0 (ω2)
u0 (ω1)

= δ

µ
ω2
ω1

¶−γ
=

δ

gγ
(12)

Check that c1 = ω1 = 1 and c2 = ω2 = g.

c2 =
1 + δ

gγ g

δ
gγ +

µ
δ
gγ

δ

¶ 1
γ

=
1 + δ

gγ g
δ
gγ +

1
g

=
1 + δg1−γ

1 + δg1−γ
g = g (13)

and

c1 =

Ã
δ
gγ

δ

! 1
γ

g = 1 (14)

What is the value of the stock market?3

pω2 = pc2 =
¡
δg−γ

¢
g = δg1−γ (15)

and

∂pω2
∂g

= δ (1− γ) g−γ < 0 if γ > 1 (16)

Therefore, if γ > 1 then good news about tomorrow’s endowment imply that
the value of the stock market decreases, which is counterfactual. The reason
is simple. An increase of the endowment in period 2 makes consumption in
period 2 more abundant. In autarky, its relative price has to fall so that the
representative agent demands more of that good. The price will need to fall more
the less substitutable the goods are. For high substitutability a small change in
the price is already enough to induce the agent to consume more in period 2.
The limiting case is when we have γ = 1 (Cobb Douglas). In the Cobb-Douglas
case the expenditure on each good is a constant fraction of income and income
does not change since the increase in ω2 is exactly offset by the decrease in p.

2.1.1 Intertemporal elasticity of substitution

Another way of analyzing this is through the IES.

We can write the derivative we are interested in as follows
3 Income is ω1 + pω2 = 1 + pω2. When we think of the value of the stock market we only

consider period 2. Period 1 is irrelevant since its contribution to lifetime income is fixed at 1.
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∂pω2
∂g

=
∂p

∂g
ω2 + p

∂ω2
∂g

=
∂p

∂g
g + p

∂g

∂g
=

∂p

∂g
g + p = (17)

= p

µ
1 +

∂p

∂g

g

p

¶
= p

1 + ∂p

∂
³
c2
c1

´
³
c2
c1

´
p

 = p

µ
1− 1

IES

¶

The IES can be calculated from the price equation,

p =
δ³
c2
c1

´γ ⇔ ln p = ln δ − γ ln

µ
c2
c1

¶
(18)

Therefore,

IES = −
∂ ln

³
c2
c1

´
∂ ln (p)

=
1

γ
(19)

Then, the equation we get is

∂pω2
∂g

= p (1− γ) (20)

The Cobb-Douglas function has IES = 1. Consequently, the effect on the
stock market is zero. For values of γ 6= 1 we get either positive or negative
responses.
More intuition on the 2 good example is offered in Appendix 0.

2.2 Infinite Periods

The 2 period example can obviously be generalized to infinite periods.
In that case the price for period t consumption in terms of period 1 would

be

pt =
δt−1u0 (ct+1)

u0 (c1)
(21)

Therefore, a claim to all future endowments would be calculated as

∞X
t=2

ptωt =
∞X
t=2

δt−1u0 (ct+1)
u0 (c1)

ωt (22)

Considering the case where the endowment starts at 1 and grows at a con-
stant rate g we have ωt = gt−1. With a CES function and at autarky

pt =
δt−1ω−γt+1
ω−γ1

=
δt−1g−γ(t−1)

1
=

µ
δ

gγ

¶t−1
(23)
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Hence,

∞X
t=2

ptωt =
∞X
t=2

µ
δ

gγ

¶t−1
gt−1 =

∞X
t=1

¡
δg1−γ

¢t
(24)

If δg1−γ < 1

∞X
t=2

ptωt =
δg1−γ

1− δg1−γ
(25)

Now consider how this changes with good news

∂

∂g

" ∞X
t=2

ptωt

#
=
(1− γ) δg−γ

(1− δg1−γ)2
(26)

Therefore, we obtain that the value of the stock market changes according
to the sign of 1− γ, just as before.

3 Equity Premium Puzzle. The model

In this section the interest is on the CES parameter as a measure of risk averision.
Thus, uncertainty is introduced.

3.1 The state space

Time is discrete. Let St be the state space at date t with generic element st.
A history is denoted by st = (s0, s1, ..., st) for t ≥ 0. Histories are partially
ordered. We say that s̃t+1 ≥ s̃t if all the elements of both histories up to the
date t element, s̃t, coincide. The model is populated by a representative agent
who faces uncertainty about the occurence of histories. His assessment of the
probability of history st is π(st). We can also define the conditional probability

π
¡
st+1|st¢ = π(st+1)

π(st) where actually

π
¡
st+1|st¢ = ½ π (st+1|st) ≥ 0 if st+1 ≥ st

0 otherwise

Sometimes histories are referred to as "nodes". This comes from the fact
that the evolution of states is sometimes represented by the use of a tree similar
to the tree of an extensive form game in game theory. If you take any node in
that tree, there is a single history st which leads to that node.
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3.2 Asset structure

The representative agent has access to a complete set of Arrow securities in zero
net supply and to a risky asset (a Lucas tree) in positive supply. The Arrow
security denoted by a

¡
st+1

¢
has a price of q

¡
st+1

¢
at date t and delivers one

unit of the consumption good at date t+ 1 if history st+1 is realized, and zero
in all other histories.
The risky asset in the economy is indexed by m, i.e. holdings of this asset

at the beginning of date t in history st will be denoted as am (st). This asset
has a t + 1 dividend d(st+1) which is unknown at date t. The price at date t
for this asset will be denoted as p (st). We will assume that the set of assets
completely spans the state space and rule out default.

3.3 Goods and Preferences

There is a single consumption good in the economy. (Actually there are ∞
goods, one in each period in each history).
A representative consumer orders streams of consumption {c (st)} using the

following time separable utility function.

U =
∞X
t=0

X
st

βtu
¡
c
¡
st
¢¢
π
¡
st
¢

(27)

The instantaneous utility function is of the constant relative risk aversion
(CRRA) type

u (x) =

(
x1−γ
1−γ if γ 6= 1
ln (x) otherwise

(28)

with γ ≥ 0.4

At each history st the agent is endowed with y (st) of the good.
Consequently, the budget constraint for the agent at node st is

c
¡
st
¢
+
X

st+1≥st
q
¡
st+1

¢
a
¡
st+1

¢
+p
¡
st
¢
am
¡
st+1

¢ ≤ y
¡
st
¢
+a
¡
st
¢
+
£
p
¡
st
¢
+ d

¡
st
¢¤
am
¡
st
¢

(29)
with the restriction that a

¡
st+1

¢
= a

¡
s̃t+1

¢
if st+1 ≥ st and s̃t+1 ≥ st. This

last restriction makes sense since a
¡
st+1

¢
is a choice variable at date t, when

the realization of st+1 is still unknown. Therefore, the agent has to carry the
same amount of the asset into each future state that might come after history
st.

4 In class, Daisuke kindly provided us with the proof that limγ→1
x1−γ
1−γ = log x. By

L’Hopital’s rule limγ→1
x1−γ
1−γ = limγ→1

−x1−γ log x
−1 = x1−1 log x = log x.
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3.4 Equilibrium

An equilibrium for this economy is a sequence of allocations
©
c (st) ,

©
a
¡
st+1

¢ª
, am (st)

ª
st
,

asset prices
©©

q
¡
st+1

¢ª
, p (st)

ª
st
for an income process {yt (st)}st such that (i)

the agent chooses
©
c (st) ,

©
a
¡
st+1

¢ª
, am (st)

ª
to maximize (27) subject to (29)

and given am
¡
s0
¢
, and (ii) the markets for assets clear.

3.5 Deriving the Asset Pricing Equation

The asset pricing equation is an alternative name for the Euler equation. Setting
up the Lagrangian for the consumer,

L =
∞X
t=0

X
st

{£βtu ¡c ¡st¢¢π ¡st¢¤+ λ
¡
st
¢
[y
¡
st
¢
+ a

¡
st
¢
+
£
p
¡
st
¢
+ d

¡
st
¢¤
am
¡
st
¢−(30)

−c ¡st¢− X
st+1≥st

q
¡
st+1

¢
a
¡
st+1

¢− p
¡
st
¢
am
¡
st+1

¢
]}

By taking partial derivatives ∂L
∂c(st) = 0 and

∂L
∂c(st+1) = 0 we obtain

βtu0
¡
c
¡
st
¢¢
π
¡
st
¢
= λ

¡
st
¢

(31)

and

βt+1u0
¡
c
¡
st+1

¢¢
π
¡
st+1

¢
= λ

¡
st+1

¢
(32)

Calculating ∂L
am(st+1) = 0

λ
¡
st
¢
p
¡
st
¢
=

X
st+1≥st

λ
¡
st+1

¢ £
p
¡
st+1

¢
+ d

¡
st+1

¢¤
(33)

Calculating ∂L
a(st+1) = 0

λ
¡
st
¢
q
¡
st+1

¢
= λ

¡
st+1

¢
(34)

Plugging (31) and (32) into (33) we obtain

X
st+1≥st

βu0
¡
c
¡
st+1

¢¢ £
p
¡
st+1

¢
+ d

¡
st+1

¢¤
π
¡
st+1|st¢ = u0

¡
c
¡
st
¢¢
p
¡
st
¢
(35)

which can be rearranged as
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X
st+1≥st

"
βu0

¡
c
¡
st+1

¢¢
u0 (c (st))

#"
p
¡
st+1

¢
+ d

¡
st+1

¢
p (st)

#
π
¡
st+1|st¢ = 1 (36)

Define the stochastic discount factor (SDF) in the usual way

m
¡
st, st+1

¢
=

βu0
¡
c
¡
st+1

¢¢
u0 (c (st))

(37)

and express (36) in terms of expectations to get

E

"
m
¡
st, st+1

¢ p ¡st+1¢+ d
¡
st+1

¢
p (st)

|st
#
= 1 (38)

Now realize that the return on the risky asset is given by

Rm
¡
st, st+1

¢ ≡ p
¡
st+1

¢
+ d

¡
st+1

¢
p (st)

(39)

Finally, we can write the Pricing Equation for the risky asset as

E
£
m
¡
st, st+1

¢
Rm

¡
st, st+1

¢ |st¤ = 1 (40)

3.6 The risk-free rate

Plugging (31) and (32) into (34) we obtain

q
¡
st+1

¢
=

βu0
¡
c
¡
st+1

¢¢
u0 (c (st))

π
¡
st+1|st¢ (41)

Now sum (41) over all st+1 to get

X
st+1≥st

q
¡
st+1

¢
=

X
st+1≥st

βu0
¡
c
¡
st+1

¢¢
u0 (c (st))

π
¡
st+1|st¢ (42)

Rewrite it in terms of expectations and using the definition of the SDF to
get X

st+1≥st
q
¡
st+1

¢
= E

£
m
¡
st, st+1

¢ |st¤ (43)

Now we can think how to calculate the risk-free rate in terms of the prices
of the Arrow securities. A risk-free bond delivers 1 unit of consumption in
every possible state. We can construct such a bond by purchasing one unit
of every Arrow security. The cost of purchasing all these Arrow securities is
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P
st+1 q

¡
st+1

¢
and we obtain 1 for sure at date t + 1. Therefore, the risk-free

rate is

Rf
¡
st, st+1

¢ ≡ 1P
st+1≥st q (st+1)

The risk-free rate does not really depend on st+1 since q
¡
st+1

¢
is determined

at t. We can write it as Rf (st). We can now rewrite (43) as

Rf
¡
st
¢
=

1P
st+1≥st q (st+1)

=
1

E [m (st, st+1) |st] (44)

or alternatively,

E
£
m
¡
st, st+1

¢ |st¤Rf
¡
st
¢
= 1 (45)

Notice the similarity to the Pricing Equation for the risky asset. Sometimes
the moment conditions for both assets and are substracted to express the excess
return as

E
£
m
¡
st, st+1

¢ ¡
Rm

¡
st, st+1

¢−Rf
¡
st
¢¢ |st¤ = 0 (46)

4 Taking the model to data

4.1 Choosing the utility function

If we want to be consistent with a Balanced Growth Path we are forced to
choose CES function. Then, the moment conditions become

E

Ãc
¡
st+1

¢
c (st)

!−γ
Rm

¡
st, st+1

¢ |st
 = 1 (47)

E

Ãc
¡
st+1

¢
c (st)

!−γ
|st
Rf

¡
st
¢
= 1 (48)

4.2 Approaches

There are several ways to approach the problem of finding a value of γ consistent
with the pricing equations.
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4.2.1 Econometrics

We might use econometrics to estimate γ using the two moment conditions. We
could estimate γ using method of moments, for example.

4.2.2 Calibration of a General Equilibrium Model

This method uses all the equilibrium equations, not only the Euler equation. It
is more complicated and requires the use of a computer.

4.2.3 Other approaches

Another approach is making simplifying assumptions to solve for γ explicitly.
In what follows we will assume log-normal returns and consumption growth as
in Hansen and Singleton (1983). This approach is used in the next section.

5 The Log-normal Case

This section assumes a log-normal joint process for the market return, private
consumption and the aggregate good and derives an expression for the equity
premium that can be contrasted with data. This way of tackling the problem
is similar to Hansen and Singleton (1983).
Consider the moment condition for the risk-free rate and the market return.

Et

"
β

µ
ct+1
ct

¶−γ
Rj
t+1

#
= 1 j = f,m (49)

Suppose that ct+1
ct

and Rm
t+1 are random variables which follow a conditional

joint log-normal processµ
log( ct+1ct

)

log(Rm
t+1)

¶
∼ N

·µ
µc
µR

¶
,

µ
σ2c σcR
σcR σ2R

¶¸
(50)

Define the equity premium as EP ≡ E
£
Rm −Rf

¤
.Then we have the follow-

ing proposition.

Proposition 1 If ct+1
ct

and Rm
t+1 are random variables which follow the condi-

tional joint log-normal process in (50) and satisfy the moment condition (49)
then the equity premium has to satisfy the following equation

EP = γσcR (51)
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Proof. In Appendix 1.
Solving for γ from the previous equation

γ =
EP

σcR
(52)

This expression relates the risk aversion parameter γ to numbers in the data.

6 Data

This section takes equation (52) to US data. It focuses on the post-war period
(1946-2002). The data was calculated in Campos (2004) from Shiller’s database
and the IFS statistics. The sources for the data and all calculations that were
performed are explained in detail in Appendix 2.

6.1 Asset market

The data for the market return and the risk free rate is from the dataset of
Shiller (2003). For this dataset the average risky and risk free rate and the
variance of the risky rate are presented in the following table.

Table 1: Returns in the data

µR 0.06980619
µRf 0.010107879
σ2R 0.024076136

With these data the equity premium adjusted for Jensen’s inequality5 is

EP = 0.071736379

6.2 Real per capita consumption

Consumption data is from the International Financial Statistics database pub-
lished by the IMF. The mean, variance and covariance with the risky rate for
the growth rate of real per capita consumption is shown in the following table.

Table 2: Consumption in the data

µc 0.019446875
σ2c 0.000597982
σcR 0.00183304

5 See Appendix 2 for the calculation.
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6.3 Risk aversion

Using the formula for γ we derived in (52)

γ =
EP

σcR
=
0.071736379

0.00183304
= 39. 135 (53)

This value for the risk aversion parameter is larger than what most econo-
mists would find reasonable.

7 Lower Bounds on the SDF

Suppose that we want to construct a model which is not at odds with financial
price data. What do we need to construct such a model? Specifically, what
conditions do we need on the stochastic discount factor (SDF)?

To answer this question, return to the pricing equation involving the excess
return

E
£
m
¡
Rm −Rf

¢¤
= 0 (54)

Using the formula for the covariance6

E [m]E
£¡
Rm −Rf

¢¤
+ Cov

£
m,Rm −Rf

¤
= 0 (55)

Divide by σm and σR to get

E [m]

σm

E
£¡
Rm −Rf

¢¤
σR

+
Cov

£
m,Rm −Rf

¤
σmσR

= 0 (56)

The second expression is just the correlation of the equity premium and the
SDF

E [m]

σm

E
£¡
Rm −Rf

¢¤
σR

+ ρ
£
m,Rm −Rf

¤
= 0 (57)

Rearrange to get

σm
E [m]

ρ
£
m,Rm −Rf

¤
= −E

£¡
Rm −Rf

¢¤
σR

(58)

Now use the fact that −1 ≤ ρ
£
m,Rm −Rf

¤ ≤ 1. Therefore,
σm
E [m]

≥
¯̄
E
£¡
Rm −Rf

¢¤¯̄
σR

(59)

6Cov (X,Y ) = E [XY ]−E [X]E [Y ] and therefore, E [XY ] = Cov (X,Y ) +E [X]E [Y ].
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The LHS is known as the market price of risk. The RHS is known as the
Sharpe Ratio. This expression states that for our model to be successful to
explain the data we need a volatility of the SDF of at least the Sharpe Ratio.
In the data, for the market return,¯̄

E
£¡
Rm −Rf

¢¤¯̄
σR

=
0.071736379√
0.024076136

= 0.462 32 (60)

So we know that for our model to be successful

σm
E [m]

≥ 0.462 32 (61)
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Appendix 0: The obscure "Substitution cancels in-
come effect" expression in the 2 good example

Sometimes when there is no effect on something with a Cobb-Douglas utility
function, people (mostly macro-economists) use the phrase "the substitution
effect exactly cancels the income effect. What does this mean? It means is that
consumption in a given period just depends on lifetime income and the price
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of consumption of that period alone. To see how these two statements are the
same we can use the cross-price Slutsky Equation to divide the total effect on
good 1 of a price change in good 2 into a substitution and an income effect.
The cross-price Slutsky equation can be written as

∂c1
∂p

=
∂cc1
∂p
− c2

∂c1
∂I

(62)

The LHS term is sometimes referred to as the Total Effect (TE). The first
term on the RHS is the cross-price derivative of the compensated demand func-
tion and measures the Substitution Effect (SE). The last term on the RHS is
the Income Effect (IE).

TE = SE + IE (63)

If we calculate the Total Effect we observe that it is zero since the demand
of first period consumption does not depend on p.

TE =
∂c1
∂p

= 0 (64)

To solve for the SE first, find the compensated demand functions. The
compensated demand functions solve the following FOC

δc1
c2

= p⇔ c1 =
pc2
δ

(65)

and the equation of the utility function

U = c1c
δ
2 (66)

Plugging the FOC into the utility function we get

U =
pc2
δ
cδ2 =

p

δ
c1+δ2 (67)

Therefore, the compensated demand for period 2 consumption is

cc2 =

µ
δU

p

¶ 1
1+δ

(68)

The compensated demand for period 1 consumption is

cc1 =
p

δ

µ
δU

p

¶ 1
1+δ

=
³p
δ

´ δ
1+δ

U
1

1+δ (69)

Now we can calculate the Substitution Effect

SE =
∂cc1
∂p

=
δ

1 + δ

1

δ

³p
δ

´ δ
1+δ−1

U
1

1+δ =
1

1 + δ
c2 (70)
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To find the Income Effect, first calculate the income derivative

∂c1
∂I

=
1

1 + δ
(71)

The Income Effect is

IE = −c2 ∂c1
∂I

=
1

1 + δ
c2 (72)

If we sume the SE and the IE we get the Total effect

TE = SE + IE =
1

1 + δ
c2 − 1

1 + δ
c2 = 0 (73)

If the SE and the IE offset each other, then the Total Effect of a cross-price
calculation is always zero, which means that consumption depends only on the
own price.
In the following graph we can depict the experiment we just did. Disregard

the measurements on the axes as they are not intended for this part. The
graph shows an initial equilibrium where the lower budget line is tangent to an
indifference curve. Now consider a fall of the price of c2 for a given income. The
budget line will tilt and become steeper. The new equilibrium is at such a point
where consumption in the first period remains constant, hence the total effect
is zero.
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This same graph can also be reinterpretetd to answer what happens to life-
time income, and hence to the value of the stock market. Interpret the graph
in the following way:
Start with the two endowment points and graph two indifference curves.

The indifference curve that goes through (ω1, ω2) and the indifference curve
that goes through (ω1, ω02). Prices such that the optimal consumption is equal
to endowments are given by the slope of the line tangent to the indifference
curves at the endowments. We can measure lifetime income in period 1 terms
as the intersection of a budget lines with the x-axis. In the case of Cobb-
Douglas preferences the two budget lines intersect the x-axis at the same point.
Therefore, lifetime income is not affected, and neither is the value of the stock
market.
If we had γ > 1 then IES < 1 meaning that the indifference curves are more

convex than Cobb-Douglas. In that case the budget line would be steeper and
cross the x-axis to the left of the Cobb-Douglas case. The stock market goes
down. With γ < 1 it is the other way around.

Appendix 1: Proof of Proposition 1
Using the fact that y = exp [log (y)] equation (49) can be expressed as

Et

·
exp

µ
log β − γ log

µ
ct+1
ct

¶
+ logRm

t+1

¶¸
= 1 (74)

Now we have an equation of the form

Et [exp(z)] = 1 (75)

where z is normal with mean µz and variance σ
2
z.

z ∼ N
¡
µz, σ

2
z

¢
(76)

The mean µz can be calculated as

µz = log β − γµc + µR (77)

and the variance σ2z

σ2z = γ2σ2c + σ2R − 2γσcR (78)

Using a well established result (see for example Casella and Berger (2001),

p.109), Et [exp(z)] = exp
³
µz +

σ2z
2

´
whenever z ∼ N

¡
µz, σ

2
z

¢
, which yields

exp

µ
µz +

σ2z
2

¶
= 1 (79)

Taking logs on both sides,

µz +
σ2z
2
= 0 (80)
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Using the calculated values for µz and σ2z this equation becomes

log β − γµc + µR +
γ2

2
σ2c +

σ2R
2
− γσcR = 0 (81)

Notice that this equation was derived from (49) and hence also holds for the
special case of the risk-free rate. In the case of the risk-free rate σ2Rf = 0 and
σcRf = 0. Therefore, the equation for the risk-free rate is given by

log β − γµc + µRf +
γ2

2
σ2c = 0 (82)

The equity premium is defined as

EP ≡ E
£
Rm −Rf

¤
(83)

Because of the log normality assumption for Rm we have

EP ≡ E
£
Rm −Rf

¤
= µR − µRf +

σ2R
2

(84)

This in turn, combining the moment ecuations derived for the risky and
riskless rate, means that the equity premium can be calculated as

EP = µR − µRf +
σ2R
2
= γσcR (85)

which is the equation in the proposition.

Appendix 2: Data sources and calculations
All data are annual and for the time frame 1946-2002. This is the same

dataset as the one used in Campos (2004).

1. Returns

The data for stock prices and the riskless rate was taken from the dataset of
Shiller (2003). This dataset is an update of data shown in Chapter 26 of Shiller
(1989). This dataset covers the time period 1871-2003. For market return it uses
the S&P 500 index and calculates the real return for that series using the CPI
index. The risk-free rate is the 6-month commercial paper rate of the Federal
Reserve board. After 1997, when this series was discontinued, the dataset uses
the 6-month Certificate of Deposit rate, secondary market. It is converted to
the real risk-free rate through the use of the CPI index.

Using the log of real market return series (Column S in Shiller’s excel file),
I calculated µR as the mean log return for the for the period 1946-2002. The
variance σ2R was calculated as the variance of the log return for that same period.
I calculated the mean risk-free return µRf as the mean log real return (the

exact formula is the mean over the period 1946-2002 of ln
¡
1 + x

100

¢
where x is

an element of column G of Shiller’s dataset).
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Given the log-normality assumption the equity premium was calculated as

EP = µR − µRf +
σ2R
2

(86)

2. Private consumption

Nominal private consumption was taken from the International Financial
Statistics (IFS) dataset published by the International Monetary Fund (IMF).
This series is called Household Consumption Expenditure and is coded 11196F.CZF.
It is available annually starting in 1948. This series was transformed into real
consumption by using the CPI in Shiller’s database and into real per-capita
consumption by dividing by population (Series 11199Z..ZF from the IFS).

I calculated µc as the mean of ln
³
ct+1
ct

´
for the period 1948-2002, where ct

stands for real per-capita consumption. σ2c was calculated as the variance of

ln
³
ct+1
ct

´
and σ2cR as the covariance of ln

³
ct+1
ct

´
and the log of the real market

return over the period 1948-2002.
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