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1 Intuition - Big Picture

Suppose that we are interested in an equilibrium concept which describes the
equilibrium strategies of unsophisticated players who learn to play a game.
These players are not very sophisticated in the sense that they don’t use equilib-
rium concepts such as subgame perfection when conjecturing how other players
will play. Instead, they form beliefs about how other players are going to play
at their information sets. These beliefs may be completely unwarranted. The
players’opponents do not necessarily play optimally in these beliefs. The play-
ers themselves are unsophisticated but not stupid, meaning that they do have
to play optimally at their own information sets given their beliefs.

Now assume that players are able to learn from previous rounds of the game.
Learning means that players observe how the game was played in the past and
adjust their beliefs to match the observed play by their opponents. But this
adjustment only takes place at those information sets that are reached in the
course of the game. Beliefs at all other information sets never adjust to the
thruth and may be anything. We may ask ourselves which equilibrium notion
might be able to describe an equilibrium of such a learning process. The answer
to this question is a Self-confirming equilibrium.

2 Notation

To define a Self-comfirming Equilibrium (SCE) we need to define beliefs about
the opponents’play for each player. Hence, we need to introduce new notation.
Further, it is necessary to distinguish between information sets that are reached
in equilibrium play and those that are not, adding to the notational complexity.
To introduce the notation, it is useful to consider an example (Fudenberg

and Kreps, 1988) of a 3 player game.
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3 3

1 2A1 A2

D1 D2

LL R R

(3,0,0)(3,0,0) (0,3,0)(0,3,0)

(1,1,1)
(a) (b)

(c)

Example 1

To illustrate some of the definitions I will also use a modification of this game.
A 2-player version of the game where player 1 plays at the lower information
set is shown in the next figure.1

1 1

1 2A1 A2

D1 D2

LL R R

(3,0)(3,0) (0,3)(0,3)

(1,1)
(a) (b)

(c)

Example 2
1This game does not exhibit perfect recall, meaning that player 1 forgets what he played

at the first information set. But this shouldn’t trouble us too much since this version of the
game will only be used as an example for notation.
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2.1 Strategies

Pure strategies for player i are denoted si ∈ Si. In the first example, S1 =
{A1,D1}, S2 = {A2,D2} and S3 = {L,R}. Mixed strategies are denoted
σi ∈

P
i. In the first example, σ1 = (σ1 (A1) , σ1 (D1)), σ2 = (σ2 (A2) , σ2 (D2)),

σ3 = (σ3 (L) , σ3 (R)). In the second example S1 = {A1L,A1R,D1L,D1R} and
S2 = {A2,D2}. Mixed strategies are σ1 = (σ1 (A1L) , σ1 (A1R) , σ1 (D1L) , σ1 (D1R))
and σ2 = (σ2 (A2) , σ2 (D2)).

2.2 Information sets

Information sets for player i are denoted Hi. In the first example, H1 = {a},
H2 = {b}, H3 = {c}. Each player has only one information set at which he is
called to play. In the second example, H1 = {a, c}, H2 = {b}. To denote an
element of Hi we use hi. In the second example where player 1 plays at nodes
a and c we could have h1 = a or h1 = c while for player 2 necessarily h2 = b.

2.3 Information sets reached with positive proability

The notation for information sets reached with positive probability under strat-
egy profile σ is H̄ (σ). In Example 1 consider the strategy profile

σ̃ = (σ1 (A1) , σ1 (D1) , σ2 (A2) , σ2 (D2) , σ3 (L) , σ3 (R)) = (1, 0, 1, 0, p, 1− p)
(1)

with p ∈ [0, 1]. This means that player 1 is playing A1, player 2 is playing
A2 and player 3 is doing anything. In this case, only information sets a and b
are reached. Hence, H̄ (σ̃) = {a, b}. If σ̂ is such that player 1 is playing D1 with
probability 1 (with the other players doing anything) then H̄ (σ̂) = {a, c}. If all
players mix then H̄ (σ) = H1 ∪H2 ∪H3 = {a, b, c}.

2.4 Behavior strategies

A behavior strategy for player i is denoted πi ∈ Πi. In Example 1 behavior
strategies are the same as mixed strategies because every player plays only once,
thus π1 = (σ1 (A1) , σ1 (D1)), π2 = (σ2 (A2) , σ2 (D2)), π3 = (σ3 (L) , σ3 (R)) . In
Example 2 a behavior strategy for player 1 is π1 = (π1 (A1) , π1 (D1) , π1 (L) , π1 (R))
(compare this to player 1’s mixed strategy) and for player 2 π2 = (σ2 (A2) , σ2 (D2)).
Sometimes it will be useful to denote a behavior strategy at an information
set hi ∈ Hi as πi (hi). In the last example, π1 (a) = (π1 (A1) , π1 (D1)),
π1 (c) = (π1 (L) , π1 (R)) and π1 = (π1 (a) , π1 (c)).

2.5 A map from mixed to behavior strategies

Denote the behavior strategy that player i uses at information set hi under
mixed strategy σi as π̂ (hi|σi). By Kuhn’s Theorem, this mapping is well de-
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fined. Take Example 2. Consider

σ1 = (σ1 (A1L) , σ1 (A1R) , σ1 (D1L) , σ1 (D1R)) =

µ
1

6
,
1

2
,
1

3
, 0

¶
(2)

Then π̂ (a|σ1) =
¡
2
3 ,

1
3

¢
and π̂ (c|σ1) =

¡
1
2 ,

1
2

¢
, meaning that under this

mixed strategy, player 1 plays A1 with probability 2
3 at node a and L with

probability 1
2 at information set c. We can define π̂ (σi) as the vector containing

all π̂ (hi|σi) for every hi ∈ Hi. In the example, π̂ (σ1) =
¡
2
3 ,

1
3 ,

1
2 ,

1
2

¢
. We

can further aggregate information by defining π̂ (σ) as the vector containing
π̂ (σi) for all players. In our example, assume that for player 2 we have σ2 =
(σ2 (A2) , σ2 (D2)) =

¡
1
2 ,

1
2

¢
. Then π̂ (σ2) =

¡
1
2 ,

1
2

¢
and

π̂ (σ) = (π̂ (σ1) , π̂ (σ2)) =

µ
2

3
,
1

3
,
1

2
,
1

2
,
1

2
,
1

2

¶
(3)

2.6 Distribution over terminal nodes

A distribution over terminal nodes derived from a strategy profile is denoted as
ρ̂ (π). In a finite game this distribution is a vector with as many elements as
terminal nodes exist, and where the sum of elements is one. It can be constructed
from a mixed strategy by setting ρ̂ (σ) = ρ̂ (π̂ (σ)). Enumerate terminal notes
as z1, z2, z3, z4, z5 as in the figure. Then

ρ̂ (π) = (ρ (z1|π) , ρ (z2|π) , ρ (z3|π) , ρ (z4|π) , ρ (z5|π)) (4)

1 1

1 2A1 A2

D1 D2

LL R R

(3,0)(3,0) (0,3)(0,3)

(1,1)
(a) (b)

(c)

z1 z2 z3 z4

z5

Example 2 with terminal nodes

To calculate ρ̂ (σ) it is necessary to calculate the probabilities of reaching
each terminal node under the mixed strategy profile σ. If we use π̂ (σ) =
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(π̂ (σ1) , π̂ (σ2)) =
¡
2
3 ,

1
3 ,

1
2 ,

1
2 ,

1
2 ,

1
2

¢
, as before, then ρ (z1) = ρ (z2) =

1
3 × 1

2 =
1
6 .

ρ (z3) = ρ (z4) =
2
3 × 1

2 × 1
2 =

1
6 . ρ (z5) =

2
3 × 1

2 =
1
3 . Hence,

ρ̂ (σ) = ρ̂ (π̂ (σ)) =

µ
1

6
,
1

6
,
1

6
,
1

6
,
1

3

¶
(5)

2.7 Beliefs and Expected utility

To model the beliefs about opponents’play, the notation µi is used. It is conve-
nient to think of µi as a probability measure over the actions at each information
set in Π−i.2 In Example 2, player 1’s beliefs are µ1 = (µ1 (A2) , µ1 (D2)) and
player 2’s beliefs are µ2 = (µ2 (A1) , µ2 (D1) , µ2 (L) , µ2 (R)). Sometimes it will
be useful to denote beliefs at some information set h−i ∈ H−i as µi (h−i). For
example, in Example 2, µ2 (a) = (µ2 (A1) , µ2 (D1)), µ2 (c) = (µ2 (L) , µ2 (R))
and µ2 = (µ2 (a) , µ2 (c)). Notice that by defining beliefs in this way, they are
formally equivalent to a behavior strategy of the opponents. µ2 is formally
equivalent to π1 in the example.
Preferences can be expressed as expectations given beliefs

ui (πi|µi) =
X
z

ui (z) ρ̂ (z|πi, µi) (6)

This formula takes the expectation of payoffs at terminal nodes, calculating
the probabilities of reaching each node from the distribution that arises from
considering a behavior strategy profile π = (πi, µi) that uses the player’s beliefs
about opponents’play. In Example 2, if player 1 believes that player 2 is going to
play D2, i.e. µ1 = (0, 1), and he plays π1 = (π1 (A1) , π1 (D1) , π1 (L) , π1 (R)) =¡
1, 0, 12 ,

1
2

¢
, then u1 (π1|µ1) = 3×1×1× 1

2 +0×1×1× 1
2 =

3
2 . Expected utility

can be extended to mixed strategies as well in the sense that

ui (σi|µi) = ui (π̂ (σi) |µi) (7)

2.8 Observation Function

We need some notation for what each player is allowed to conjecture about
what other players are playing. The following nasty-looking expression serves
this purpose

Π−i (σ−i|J) ≡ {π−i|πj (hj) = π̂ (hj |σj) ,∀hj ∈ H−i ∩ J} (8)

This expression defines the subset of behavior strategies consistent with the
fact that player i’s opponents are playing σ−i at the information sets in J . J
is called the observation function. The intuition is that if players observe what
happens at the information sets in J , then their conjectures about the strategies
of their opponents should lie in the set Π−i (σ−i|J).

2This definition of beliefs differs from the definition given in the lecture notes. In the
lecture notes beliefs are a probability measure over Π−i. The way I defined them, beliefs are
elements of Π−i.
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In Example 2 consider J = {a} and procced with the calculation ofΠ−i (σ−i|J)
for player 2. Π−2 (σ−2| {a}) = Π−2 (σ1| {a})

Π−2 (σ1| {a}) ≡ {π1|π1 (h1) = π̂ (h1|σ1) ,∀h1 ∈ {a, c} ∩ {a}} (9)

The only h1 ∈ {a, c} ∩ {a} is h1 = a. Thus,

Π−2 (σ1| {a}) = {π1|π1 (a) = π̂ (a|σ1)} (10)

If player 1 is playing the mixed strategy σ1 = (σ1 (A1L) , σ1 (A1R) , σ1 (D1L) , σ1 (D1R)) =¡
1
6 ,

1
2 ,

1
3 , 0
¢
then π̂ (a|σ1) =

¡
2
3 ,

1
3

¢
(this was calculated before). Therefore,

Π−2 (σ1| {a}) =
½
π1|π1 (a) =

µ
2

3
,
1

3

¶¾
(11)

Π−2 (σ1| {a}) =
½µ

2

3
,
1

3
, x, 1− x

¶
, x ∈ [0, 1]

¾
(12)

So, what does this mean? It means that if player 1 is using the strategy
σ1 =

¡
1
6 ,

1
2 ,

1
3 , 0
¢
and player 2 only observes information set a, then the only

restriction he can put on player 1’s behavior strategy is that he is playing with
probabilities

¡
2
3 ,

1
3

¢
at node a. He can’t say anything about what behavior

strategy is used by 1 at node c.
Alternatively, we might wonder what happens if we set J = {c}.3 In that

case we get

Π−2 (σ1| {c}) =
½µ

x, 1− x,
1

2
,
1

2

¶
, x ∈ [0, 1]

¾
(13)

Finally, if J = {a, c} then

Π−2 (σ1| {a, c}) =
½µ

2

3
,
1

3
,
1

2
,
1

2

¶¾
(14)

consists of a single element.

3 Definitions of equilibrium concepts

Now that we have chewed through the notation we can define equilibrium con-
cepts with the new notation.

Definition 1 (Nash Equilibrium) A Nash Equilibrium is a mixed profile σ such
that for all i there exist beliefs µi such that
1. ui (σi|µi) ≥ ui (s

0
i|µi), for all s0i ∈ Si

2. µi ∈ Π−i (σ−i|H)
In terms of the lecture notes, condition 2 hat to be written as µi (Π−i (σ−i|H)) =

1.4 The definition of a Nash Equilibrium implies that beliefs have to be correct
3We can do the calculation even though in our example it doesn’t make much sense to

think that player 2 observes c and does not observe a.
4Recall that my definition of beliefs treats them as elements of Π−i instead of a probability

distribution over Π−i.
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at all information sets.

Definition 2 (Unitary SCE) A Unitary SCE is a mixed profile σ such that for
all i there exist beliefs µi such that
1. ui (σi|µi) ≥ ui (s

0
i|µi), for all s0i ∈ Si

2’. µi ∈ Π−i
¡
σ−i|H̄ (σ)

¢
In the lecture notes 2’is written µi

¡
Π−i

¡
σ−i|H̄ (σ)

¢¢
= 1. The definition

of a Unitary SCE implies that beliefs have to be correct at all information sets
that are reached with positive probability under the equilibrium profile σ.

Definition 3 (Heterogeneous SCE) A Heterogeneous SCE is a mixed profile σ
such that for all i there exist beliefs µi for every si ∈support(σi), such that
1. ui (σi|µi) ≥ ui (s

0
i|µi), for all s0i ∈ Si

2”. µi ∈ Π−i
¡
σ−i|H̄ (si, σ−i)

¢
In the lecture notes 2” is written µi

¡
Π−i

¡
σ−i|H̄ (si, σ−i)

¢¢
= 1. The de-

finition of a Heterogeneous SCE implies that beliefs have to be correct at all
information sets that are reached with positive probability if the profile of play
is (si, σ−i) where si is an element in the support of σi. The key idea of this
equilibrium concept is that when we consider a mixed strategy for player i we
treat each pure strategy in its support as if it was a different player i playing
it. This means that the beliefs associated with pure strategy s0i ∈ support(σi)
might differ from the beliefs associated with s00i ∈ support(σi).
Notice that all three definitions are basically the same and only differ in the

expression

Π−i (σ−i|J) (15)

where the observation function takes values J = H, H̄ (σ) , H̄ (si, σ−i). Thus,
the equilibrium concepts are, in a way, indexed by the observation function.
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4 Examples

4.1 Nash Equilibrium vs. Unitary SCE

Consider the game in Example 1.

3 3

1 2A1 A2

D1 D2

LL R R

(3,0,0)(3,0,0) (0,3,0)(0,3,0)

(1,1,1)
(a) (b)

(c)

Example 1

In this game there is a Unitary SCE in which players 1 and 2 play across.
Strategies are σ1 = (σ1 (A1) , σ1 (D1)) = (1, 0), σ2 = (σ2 (A2) , σ2 (D2)) = (1, 0),
and σ3 = (σ3 (L) , σ3 (R)) = (x, 1− x) with x ∈ [0, 1]. Beliefs which make these
strategies optimal are µ1 = (µ1 (A2) , µ1 (D2) , µ1 (L) , µ1 (R)) = (1, 0, 0, 1),

µ2 = (µ2 (A1) , µ2 (D1) , µ2 (L) , µ2 (R)) = (1, 0, 1, 0) and
µ3 = (µ3 (A1) , µ3 (D1) , µ3 (A2) , µ3 (D2)) = (1, 0, 1, 0). These beliefs are

correct on the equilibrium path H̄ (σ) = {a, b}. Beliefs of players 1 and 2 differ
at information set c, which is not on the equilibrium path. Further, there is no
Nash equilibrium with players 1 and 2 playing across. To check this, construct
the normal form of the game and check the best responses.

Player 1 plays A1 Player 1 plays D1

L R
A2 1,1,1 1,1,1
D2 3,0,0 0,3,0

L R
A2 3,0,0 0,3,0
D2 3,0,0 0,3,0

The bold numbers show best the responses for all three players. As can be
seen, there is no Nash Equilibrium where both players play across.
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4.2 Unitary vs. Heterogeneous SCE

Consider the following game.

1 2(2,2)
L R

(3,1)

(0,0)

U

D

Selten Game

In this game there is a unitary SCE in which player 1 plays L, believing that
player 2 plays D with at least some probability, and another one in which player
1 plays R and player 2 plays U. There is no Unitary SCE in which player 1
mixes. However, there exist Heterogeneous SCE of this type. Take σ1 =

¡
1
2 ,

1
2

¢
and σ2 = (1, 0). There exist beliefs for each incarnation of player 1 such that
playing a pure strategy in the support is optimal. For example, for the player
who plays L beliefs are µL1 = (0, 1) 6= σ2, which is allowed since the information
set at which player 2 plays is not in H̄ (L, σ2). Beliefs for the incarnation who
plays right have to be correct, µR1 = (1, 0) = σ2.
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