Copyright (C) 2010 David K. Levine

This document is an open textbook it is released under your choice of
(a) the creative commons license: Attribution-ShareAlike License
(b) version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://levine.sscnet.ucla.edu/general/gpl.htm; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.

Learning in Games
 Introduction and Basic Concepts

David K. Levine
October 5, 2010

Definition of Extensive Form Game

a finite game tree X with nodes $X \in X$
nodes are partially ordered and have a single root (minimal element)
terminal nodes are $z \in Z$ (maximal elements)

ROOT

Players and Information Sets

player 0 is nature
information sets $h \in H$ are a partition of $X \backslash Z$
each node in an information set must have exactly the same number of immediate followers
each information set is associated with a unique player who "has the move" at that information set
$H_{i} \subset H$ information sets where i has the move

More Extensive Form Notation

information sets belonging to nature $h \in H_{0}$ are singletons
$A(h)$ feasible actions at $h \in H$
each action and node $a \in A(h), x \in h$ is associated with a unique node that immediately follows x on the tree
each terminal node has a payoff $r_{i}(z)$ for each player
by convention we designate terminal nodes in the diagram by their payoffs

Example: a simple simultaneous move game

Behavior Strategies

a pure strategy is a map from information sets to feasible actions $s_{i}\left(h_{i}\right) \in A\left(h_{i}\right)$
S_{i} are the set of pure strategies
$\sigma_{\mathrm{i}} \in \Sigma_{\mathrm{i}}$ are mixed strategies, probability distributions over pure strategies
a behavior strategy is a map from information sets to probability distributions over feasible actions $\pi_{i}\left(h_{i}\right) \in P\left(A\left(h_{i}\right)\right)$

Nature's move is a behavior strategy for Nature and is a fixed part of the description of the game

We may now define $u_{i}(\pi)$
normal form are the payoffs $u_{i}(s)$ derived from the game tree

Kuhn's Theorem

every mixed strategy gives rise to a unique behavior strategy
$\hat{\pi}\left(h_{\mathrm{i}} \mid \sigma_{\mathrm{i}}\right)$ map from mixed to behavior strategies
The converse is NOT true
however: if two mixed strategies give rise to the same behavior strategy, they are equivalent, that is they yield the same payoff vector for each opponents profile $\mathrm{u}\left(\sigma_{\mathrm{i}}, \mathrm{S}_{-\mathrm{i}}\right)=\mathrm{u}\left(\sigma_{\mathrm{i}}{ }^{\mathrm{i}}, \mathrm{S}_{-\mathrm{i}}\right)$

Additional Notation

$\overline{\mathrm{H}}(\sigma)$ reached with positive probability under σ
$\hat{\rho}(\pi), \hat{\rho}(\sigma) \equiv \hat{\rho}(\hat{\pi}(\sigma))$ distribution over terminal nodes
μ_{i} a probability measure on $\Pi_{-\mathrm{i}}$
$u_{i}\left(s_{i} \mid \mu_{i}\right)$ preferences
$\Pi_{-i}\left(\sigma_{-i} \mid J\right) \equiv\left\{\pi_{-i} \mid \pi_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{i}}\right)=\hat{\pi}\left(\mathrm{h}_{\mathrm{i}} \mid \sigma_{\mathrm{i}}\right), \forall \mathrm{h}_{\mathrm{i}} \in \mathrm{H}_{-\mathrm{i}} \cap \mathrm{J}\right\}$

Nash Equilibrium

a mixed profile σ such that for each $\mathrm{s}_{\mathrm{i}} \in \operatorname{supp}\left(\sigma_{\mathrm{i}}\right)$ there exist beliefs μ_{i} such that

- $\quad \mathrm{s}_{\mathrm{i}}$ maximizes $\mathrm{u}_{\mathrm{i}}\left(\cdot \mid \mu_{\mathrm{i}}\right)$
- $\quad \mu_{\mathrm{i}}\left(\Pi_{-\mathrm{i}}\left(\sigma_{-\mathrm{i}} \mid \mathrm{H}\right)\right)=1$

Why Might We Be At Nash Equilibrium?

The rush hour traffic game
Potential games
Dynamics versus statics: two different questions
$>$ What sort of outcomes can arise from asymptotic of learning? Nash? Self-confirming?
$>$ What does the adjustment path look like?
Focus on statics first
Active versus passive learning

Unitary Self-Confirming Equilibrium

What does learning tell us in extensive form games?

- $\quad \mu_{\mathrm{i}}\left(\Pi_{-\mathrm{i}}\left(\sigma_{-\mathrm{i}} \mid \overline{\mathrm{H}}(\sigma)\right)\right)=1$

Theorem: Path equivalent to Nash equilibrium when there are two players

Why?

Fudenberg-Kreps Example

A_{1}, A_{2} is self-confirming, but not Nash any strategy for 3 makes it optimal for either 1 or 2 to play down but in self-confirming, 1 can believe 3 plays R; 2 that he plays L

Heterogeneous Self-Confirming equilibrium

- $\mu_{\mathrm{i}}\left(\Pi_{-\mathrm{i}}\left(\sigma_{-\mathrm{i}} \mid \overline{\mathrm{H}}\left(\mathrm{s}_{\mathrm{i}}, \sigma\right)\right)\right)=1$

The "observation function"

$$
\mathrm{J}\left(\mathrm{~s}_{\mathrm{i}}, \sigma\right)=\mathrm{H}, \overline{\mathrm{H}}(\sigma), \overline{\mathrm{H}}\left(\mathrm{~s}_{\mathrm{i}}, \sigma\right)
$$

Public Randomization

Remark: In games with perfect information, the set of heterogeneous self-confirming equilibrium payoffs (and the probability distributions over outcomes) are convex

Example Without Public Randomization

Knowing and Unknowing Losses

The relative importance of learning

Ultimatum Bargaining Results

Raw US Data for Ultimatum

x	Offers	Rejection Probability
$\$ 2.00$	1	100%
$\$ 3.25$	2	50%
$\$ 4.00$	7	14%
$\$ 4.25$	1	0%
$\$ 4.50$	2	100%
$\$ 4.75$	1	0%
$\$ 5.00$	13	0%
	27	

US $\$ 10.00$ stake games, round 10

Trials	Rnd	Cntry Stake	Case	Expected Loss			$\begin{aligned} & \text { Max } \\ & \text { Gain } \end{aligned}$	Ratio
				PI 1	PI 2	Both		
27	10	US	H	\$0.00	\$0.67	\$0.34	\$10.00	3.4\%
27	10	US	U	\$1.30	\$0.67	\$0.99	\$10.00	9.9\%
10	10	USx3	H	\$0.00	\$1.28	\$0.64	\$30.00	2.1\%
10	10	USx3	U	\$6.45	\$1.28	\$3.86	\$30.00	12.9\%
30	10	Yugo	H	\$0.00	\$0.99	\$0.50	\$10?	5.0\%
30	10	Yugo	U	\$1.57	\$0.99	\$1.28	\$10?	12.8\%
29	10	Jpn	H	\$0.00	\$0.53	\$0.27	\$10?	2.7\%
29	10	Jpn	U	\$1.85	\$0.53	\$1.19	\$10?	11.9\%
30	10	Isrl	H	\$0.00	\$0.38	\$0.19	\$10?	1.9\%
30	10	Isrl	U	\$3.16	\$0.38	\$1.77	\$10?	17.7\%
	WC		H			\$5.00	\$10.00	50.0\%

Rnds=Rounds, WC=Worst Case, H=Heterogeneous, U=Unitary

Comments on Ultimatum

- every offer by player 1 is a best response to beliefs that all other offers will be rejected so player 1's heterogeneous losses are always zero.
- big player 1 losses in the unitary case
- player 2 losses all knowing losses from rejected offers; magnitudes indicate that "subgame perfection" does quite badly; but really a matter of social preference
- tripling the stakes increases the size of losses a bit less than proportionally (losses roughly double)
- key fact: unknowing losses considerably larger than knowing losses relative importance of learning

Centipede Game: Palfrey and McKelvey

Numbers in square brackets correspond to the observed conditional probabilities of play corresponding to rounds $6-10$, stakes $1 \times$ below.

This game has a unique self-confirming equilibrium; in it player 1 with probability 1 plays T_{1}

Summary of Experimental Results

Trials Rnd	Rnds	Stake		Expected Loss			Max	Ratio
			Pl 1	Pl 2	Both	Gain		
29^{*}	$6-10$	1 x	H	$\$ 0.00$	$\$ 0.03$	$\$ 0.02$	$\$ 4.00$	0.4%
29^{*}	$6-10$	1 x	U	$\$ 0.26$	$\$ 0.17$	$\$ 0.22$	$\$ 4.00$	5.4%
	WC	1 x	H			$\$ 0.80$	$\$ 4.00$	20.0%
29	$1-10$	1 x	H	$\$ 0.00$	$\$ 0.08$	$\$ 0.04$	$\$ 4.00$	1.0%
10	$1-10$	$4 x$	H	$\$ 0.00$	$\$ 0.28$	$\$ 0.14$	$\$ 16.00$	0.9%

Rnds=Rounds, WC=Worst Case, H=Heterogeneous, U=Unitary
*The data on which from which this case is computed is reported above.

Comments on Experimental Results

- heterogeneous loss per player is small; because payoffs are doubling in each stage, equilibrium is very sensitive to a small number of player 2's giving money away at the end of the game.
- unknowing losses far greater than knowing losses
- quadrupling the stakes very nearly causes $\bar{\varepsilon}$ to quadruple
- theory has substantial predictive power: see WC
- losses conditional on reaching the final stage are quite large-inconsistent with "subgame perfection" indicative however of social preference. McKelvey and Palfrey estimated an incomplete information model where some "types" of player 2 liked to pass in the final stage. This cannot explain many players dropping out early so their estimated model fits poorly.

