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Indeterminacy in Applied Intertemporal General
Equilibrium Models

Timothy J. Kehoe and David K. Levine

1 Introduction

In recent vears large-scale applied general equilibrium models have
increasingly gained acceptance as a tool for policy analysis. To study
issues such as social security schemes. the national debt. monetary
policy and international exchange rates it js essential that these
models have an explicitly dynamic component. Roughly. the goal is
to build more realistic descriptive models incorporating the features
found in more stylized dvnamic models, such as those in Diamond
(19653). Lucas (1972) and Kareken and Wallace (19K1).

The most ambitious effort in this direction is the work of
Auerbach. Kotikoff and Skinner (1983). To analyze public finance
issues. theyv build an empirical overlapping generations model. To
calculate equilibria the model is truncated to effectively have i long
finite horizon. Since this procedure is rather artificial. an obvious
question that arises is how sensitive the calculated equilibrium is to
the way in which the mode] is truncated. As we point out here. there
is a close connection between this question and the question of
whether the underlying infinite horizon model is determinate. Unfor-
tunately. and in contrast with models with a finite number of
infinitely lived agents. overlapping generations models may not have
determinate equilibria (Kehoe and Levine, 1985).

That an overlapping generations mode] might have a continuum of
equilibria is well known. When counting the equations and unknowns
in his equilibrium conditions. Samuelson (1958) himself has noted
that “we never seem to get enough equations: lengthening our time
period turns out always to add as many new unknowns as it supplies
equations™ (see also Samuelson, 1960). Gale (1973) has extensively
studied the overlapping generations model with a single two-period-
lived consumer in each generation and one good in each period. In
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such a model he finds that indeterminacy is always associated with
equilibria that have nonzero amounts of nominal debt. Such indeter-
minacy is always one dimensional; in other words the equilibria can
be indexed by a single number. e.g. the price of fiat money. Balasko
and Shell (1981) have extended these results to a model in which
there are many goods in each period but a single two-period-lived
consumer in each generation. in fact. a consumer with a Cobb-
Douglas utility function. Geanakoplos and Polemarchakis (1984) and
Kehoe and Levine (1984a) have extended these results to a model
with a single two-period-lived consumer with intertemporally separ-
able preferences in each generation. Kehoe et al. (1986) have
extended them to a model in which demand satisfies the assumption
of gross substitutes. Calvo (1978) has constructed examples in which
the indeterminacy is still one dimensional, indexed by the price of an
asset such as land or capital.

In this paper we consider pure exchange overlapping generations
models with n goods in each period. We argue that for a model with
a nonzero stock of nominal debt there is potentially an n-dimensional
indeterminacy. while for a model with no nominal debt there is
potentially an (n — 1)-dimensional indeterminacy. Thus relative prices
within a period can be indeterminate. Although our results agree with
those previously known for the case where there is one good in every
period. they indicate that indeterminacy does not depend on the
existance of fiat money or other assets. Furthermore. even in pure
exchange models with no aggregate debt or assets. our results
indicate that equilibria may be indeterminate or not whether or not
they are Pareto efficient.

How far do we have to go to construct examples in which there are
indeterminate equilibria without fiat money or indeterminate equilib-
ria that are Pareto efficient? We present an example in which the
only departure from the simple model considered by Gale is that the
single consumer in each generation lives three. rather than two.
periods. Gale himself considers such models and conjectures that the
results he obtains for the two-period-lived model carries over to
them. Unfortunately. we provide a robust example that demonstrates
that this is not the case. This stands in fundamental contrast with the
static pure exchange model. where. although it is always possible to
construct examples with continua of equilibria. such examples cannot
be robust. As we shall see. our three-period-lived consumer model
can aiso be viewed as a model with two-period-lived consumers in
each generation and two goods in each period.

Indeterminacy of relative prices is possible for very plausible
parameter values. In fact. the value of the crucial parameter in our
example. the elasticity of substitution in consumption over time. has
been chosen to agree with the empirical evidence. (See Auerbach.
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Kotlikoff and Skinner (1983) and Mankiw. Rotemberg and Summers
(1985) for summaries of this evidence.) Since the representative
consumer in our example has a constant elasticity of substitution
utility function. the value we have chosen. 0.2. allows some goods to
be gross complements at some prices. In situations where goods are
always gross substitutes we argue that indeterminacy of the type
discussed in this paper is impossibic. To guarantee gross substitutabil-
itv. however, we need to set the elasticity of substitution greater than
or equal to 1.0, which is an implausibly high value.

What does this mean for applied research such as that of
Auerbach. Kotlikoff and Skinner (1983)? An obvious recommenda-
tion is to test the sensitivity of the model to terminal conditions. Our
results indicate that this may be a substantial problem.

A second issue is empirical: indeterminacy is a property of over-
lapping generations models but not of models with finitely many
infinitely lived dynasties (see Kehoe. Levine and Romer. forthcom.-
ing). Consequently the importance of the bequest motive. as discus-
sed. for example. by Darby (1979) or Kotlikoff and Summers (1981).
is crucial in whether or not sensitivity to endpoint conditions is likely
to be important in practice. In addition. liquidity constraints. such as
those of Bewley (1980. 1983). Scheinkman and Weiss (1986) or
Levine (1989). tend to lead to overlapping-generations-type implica-
tions.

We begin by describing a simple stationary model and examining
its steady state. We then study the behavior of equilibrium price
paths around a steady state and characterize the dimensionality of
paths that converge to the steady state. The second and third sections
of this paper constitute a relatively nontechnical summary of the
results of Gale (1973) and Kehoe and Levine (1984b. 1985). The
fourth section presents a simple example of indeterminacy of relative
prices. In the fifth section we argue that indeterminacy of equilibrium
in the infinite model corresponding to acute sensitivity to terminal
conditions in any truncated version of the model. In the sixth section
we prove that indeterminacy is impossible if all goods are gross
substitutes. In the seventh section we indicate how our results can be
extended to models that have growing populations. models that are
nonstationary for any finite number of periods and models that have
equilibrium cycles. We conclude with a short discussion of some
possible extensions of our results and their implications for applied
work.

2 The Model and its Steady States

We begin by considering a model in which each generation lives two
periods. As we shall explain, a model in which each generation lives



114 Timothy J. Kehoe and David K. Levine

more than two periods can be viewed as 3 special case of this model,
Each generation 1= 1 js identical and lives in periods ¢ and 4 + |
There are n goods in each period. The vector pr=(pl. . Pl
denotes prices in . The consumption and savings decisions of the
(possibly many different types of) consumers in generation ¢ are
aggregated into excess demand functions VP, p..;) when voung and
2(p,. p,+1) when old: v and z are of course. n-dimensional vectors
Excess demands are assumed to be homogeneous of degree zero,

Y(6p:. Op.y) = y(p,. p,.,)
2(6p,. Op,.y) = 2(p,. Pis1)
for any 6 > 0. and 10 obey Walras's law

PU'(P:-P:H) + P/,HZ(P/«PHJ) =0 (42)

Although the mode] is specified in terms of the excess demand
functions y and 7. it may be helpful to think of them as being derived
from solutions to utility maximization problems of the form

(4.1)

maximize u,(y" + whzh 4 wl)

-

subject to piy" + pr. 2" < @ (4.3)

Wz —wh —wt

Here y" is the vector of net trades made by consumer # in generation
* when young. z" is the vector of net trades when old. and wi and
Wi are endowment vectors. The aggregate excess demand functions
are defined as

) = h
_‘(pnpwl) hz,‘ (P:-p:+1) (44)

Z(P,- Pm) = zh:zh(pl- P,+1)

The form of the budget constraint in (4.3). and the assumptions of
homogeneity and Walras's law that correspond to it. are implicitly
€quivalent to the assumption that consumers are allowed to trade
g0oods with each other, even if the goods are consumed in different
time periods. Ope institutional Story to go with this assumption is that
we allow creation of private debt. or inside money. i.e. consumer /
can be thought of g having two budget constraints. pyt +ml<0
and pi 2"~ mh < g, where m! is the amount of money that he
carries over from period  to period 1+ 1. We allow m! to be
Negative. thus allowing borrowing. Adding these two budget con-
straints together eliminates m" and vields the constraint in (4.3). The
presence of public debr. of outside money. is a different matter.
however. which. aq we shall see. depends on initial conditions.
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Viewing each consumer as facing a sequence of budget constraints
provides us with an alternative way of viewing relative prices. The
prices (p,. p, . |) considered above are the same prices that consumers
face if there is a complete set of futures markets. Suppose instead
that the consumer faces two budget constraints of the form

gy +ml <0 (4.5)
qi12" = mh1 + r)<0

where g, and g, , | are vectors of spot prices and r, is the interest rate
on borrowing and lending between periods ¢ and r + 1. Again the
budget constraints in (4.5) reduce to that in (4.3) if we set p, =
a/L+r)(L+r). . (1+ 7).

We assume that excess demands are continuously differentiable for
all strictly positive price pairs (Pi+ P/ + ). which. as Debreu (1972) and
Mas-Colell (1974) have shown, entails little loss of generality. We
further assume that v and z are bounded from below and are such
that some. but not all, prices approach zero, the sum of excess
demand becomes unbounded: j.e. e'lyip,p,.,) + 2(p.pi)] - =
where e denotes the n vector whose every element is one. These
assumptions are naturally satisfied when vV and z are derived from
utility maximization: if consumption of every good by every consumer
must be non-negative, then an obvious lower bound for (y.z) is
(=w,. —w.) where w, and w, are the aggregate endowment vectors.
If preferences are monotonically increasing in consumption, then
when a single price goes to zero the excess demand for that good
becomes infinite. Furthermore. if more than one price goes to zero.
then excess demand for some. but perhaps not all. of the correspond-
ing goods becomes infinite (see Arrow and Hahn. 1971. pp. 29-31).

Debreu (1974) has demonstrated that. for any y and z that satisty
the assumptions of homogeneity and Walras's law. there exists a
generation of 2 utility maximizing consumers whose aggregate excess
demand functions y* and z* agree with Y and z on that set of
positive relative prices uniformly bounded away from zero. There is a
minor technical complication in that y* and z* may not agree with y
and = as some relative prices approach zero. Utilizing a result due to
Mas-Colel] (1977). however. Kehoe and Levine (1984b) argue that we
can ignore this qualificatior when studying the behavior of the excess
demand functions near steady states. Consequently, for our purposes
we are jusified in viewing our assumptions as both necessary and
sufficient for demand functions derived from utility maximization by
heterogeneous consumers. As we shall see, however. the possibility
of indeterminacy of relative prices in overlapping generations models
does not depend on implausible aggregate excess demand functions or
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even on heterogeneity among consumers within a generation.

In addition to the consumers born in periods |. 2. .. .. there is an
initial old generatjon alive in period 1. Its excess demand function
Zu(p1. m) depends on prices p; in the first period and the nominal

of as outside or fiar money. at least if m = (. Implicitly. as m
changes, the distribution of savings between consumers in the initial
old generation changes in 3 fixed way. We assume that z, is
continuously differentiable. is homogeneous of degree zero.

2o(6p,. m) = 2o(py. m) (4.6)
for any 6 > 0, and obeys Walras's law,
Pizo(py. m)=m (4.7)
An equilibrium for this economy is an initial leve] of nominal
savings m and a price path (p,, P2....) for which excess demand
vanishes in each period:
2o(Prsm) + y(p,. p)) = 0 (4.8)
for ¢ = 1 and
Z(P:—J-P:)+Y(P1-Pz+1)=0 (49)

for 1> 1, Repeated application of the equilibrium conditions and
Walras's Jaw implies that “Pv(p,.p .y = Piaz(pp) = m at all
times, Consequeml_v. m is the fixed nominaj net savings made by the
Young generation in each period. If m js non-negative jt is easy to
interpret it as fiat money. Even if it s negative. however. there are
institutional storjes o accompany it: think of an institution that
makes loans to consumers when they are voung and uses the
f¢payment of these loans to make loans to consumers in the next
generation.

A steady state of this economy is a relatjve price vector p and an
inflation factor B such that p, = B'"'p satisfies

BT B )+ w(prp., Br)=z(p. Bp) + v(p.fp) = 0 (4.10)

Here r=1/8-1 js the steady state rate of interest. Notice that a
steady state is not necessarily an equilibrium price path because ijt
may not satisfy the equilibrium condition (4.8) in the first period.
There are two types of steady states: real steadv states in which
m=-=p'y(p.Bp)=0 and monetary. or nominal. steady states in
which m # (. Op the one hand. Walras's law implies that Py +B2)
= () and. consequently. that Bp'z = m. On the other hand. the steady
State condition (4.10) implies that P'(y+z) = 0 and. consequently .
that p'z = p;. Therefore (B=1)m = 0. and any nominal steadv state
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must have § = 1. Gale calls steady states in which f = | golden rule
steady states because they maximize a weighted sum of individual
utility functions subject to the constraint of stationary consumption
over time. He calls real steady states balanced.

It is possible to construct examples in Which a golden rule steady
state is also balanced. i.e. in which m = ( and 3 = | simultaneously.
Such a steady state must satisfv z(p. p) + ¥(p.p) =0 and —p'y
(p.p) = 0. Walras's law implies that this is a system of » indepen-
dent equations: homogeneity implies that there are n — 1 indepen-
dent unknowns. Consequently we would expect this system of equa-
tions to have a solution only by coincidence. In fact. Kehoe and
Levine (1984b) prove that almost all economies do not have a steady
state where both m = () and B = 1. They give the space of economies
(v. z) that satisfy the assumptions of differentiability, homogeneity,
Walras’s law and the boundary condition a topological structure: two
economies are close to each other if the values of demand functions
and the values of their partial derivatives are close. The phrase
“almost all” in this context means that the property holds for a subset
that is open and dense: any sufficiently small perturbation of an
economy that does not have a steady state where m = (0 and B=1
results in an economy that still does not have such a steady state: for
any economy that has such a steady state. however, there exist
arbitrarily small perturbations that result in economies that do not
have such steady states. A property that holds for almost all
economies is called a generic property.

Gale proves that the model with a single two-period-lived consumer
in each generation has a unique nominal steady state and, generically,
a unique real steady state. The unique nominal steady state is where
the price of the single good is constant over time. Walras's law
implies that this situation does indeed satisfy the steady state condi-
tion (4.10). At this steady state the savings of the young person are
not. in general, zero. Since there is only one consumer in each
generation any trade that takes place must be between generations.
Consequently, since there is only one good in each period, there can
be trade only if there is a corresponding transfer of nominal debt
from period to period. Any real steady state must therefore be given
by a relative price ratio B = p..1/p, that makes the consumer prefer
not to trade. Such a price ratio obviously exists: generically there is
only one.

With many consumers in each generation but only one good in
each period, nominal steady states are still unique but real steady
states need not be: consider a static pure exchange economy with two
consumers and two goods that has multiple, but determinate. equi-
libria. Robust examples of this sort are. of course, easy to construct
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(see. for example, Shapley and Shubik. 1977). Now construct an
overlapping generations economy by assigning two such consumers to
each generation and by letting one of the goods by available in the
first period of their lives and the other in the second. Each of the
different equilibria of the static ecomony now corresponds to a
different real steady state of the overlapping generations economy in
which the two consumers in each generation trade with each other
but not with other generations. With many goods and many con-
sumers neither real steady states nor nominal steady states need by
unique. Kehoe and Levine (1984b) prove. however. that generically
there exists an odd number of each type. Their arguments are similar
to those used to prove that the number of equilibria of pure exchange
economy is odd (see. for example. Varian, 1974). In similar vein.
Kehoe et al. (1986) show that. if Y and z satisfy the assumption of
gross substitutes, then there js a unique steady state of each type.
Using a result due to Balasko and Sheli (1980). we are able to
€xamine the efficiency properties of steady states (see also Burke.

equilibrium price path of such a model to be Pareto efficient is that
the infinite sum Z1/llp.ll does not converge. (Here. of course. [ s
the ordinary Euclidean norm- lpdl = (pip.)' ) This result can easily
be extended to models with many consumers in everv generation.
Consequently. a steady state of our model is Pareto efficient if and
only if S<1. in other words. if and only if the interest rate js
non-negative. Price paths that converge to steady states where p=1
are Pareto efficient: those that converge to steadv states where p>1
are not.

Every economy has a Pareto-efficient steady state since it always
has a steadv state where B =1. In the model with one two-period-
lived consumer with gross substitutes excess demands in each genera-
tion and one good in each period. Gale finds that the unique real
state has < ] if and only if the unique nominal steady state has
m < 0. Similarly. > 1 at the rea] steady state if and only if m > 0 at
the nominal steady state. In the more general model we cannot make
such strong statements. We can. however, demonstrate that every
cconomy has an odd number of steady states where B<1and m <.
We sketch an argument below: details are given by Kehoe and
Levine (1984b). This argument also makes it clear Why every eco-
nomy has an odd number of real steady states and an odd number of
nominal steady states.

Consider the » functions
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1P B) = ¥(p- Bp) + 2(p. pp) — L el

Notice that. for any fixed 8 > 0. that the functions f,(p. 8) have the
formal properties of excess demand functions of a static pure ex-
change economy: they are homogeneous of degree zero in p and
satisfy Walras's law, p'f(p. 8) = 0. Consequently. for any 8> 0 there
exists at least one value of p that solves the equations

fip.B)=0 i=1,...n (4.12)

Walras's law implies that this is a system of n — 1 independent
equations; homogeneity implies that there are n — 1 independent
unknowns. Consequently. it can easily be shown that solutions to this
system of equations are generally smooth implicit functions of 8. Our
assumptions on the behavior of excess demand as some prices tend
toward zero guarantee that there exists §> 0 and 8 >  such that any
steady state value of § satisfies 8 < 8 < B.

There are two distinct ways for a pair (p., ) that satisfies (4.12) to
be a steady state: if —p'v(p.f)=0 or if $=1. In either case
Walras's law implies that p'[y(p. Bp) + Bz(p. Bp)] = 0. Let

m(p.B)=—p'v(p, Bp) (4.13)

for any (p. B). and consider pairs m and 8 such that m = m{p. B)
and (p. f) satisfies (4.12). Unfortunately, m is not. in general. a
well-defined function of f since for any S there may be more than
one p such that (4.12) is satisfied. We are justified. however. in
drawing diagrams like that in figure 4.1. There are a finite number of
paths of pairs m and § that satisfy our conditions. Some of them are
loops that do not intersect the boundary 8 =8 or = B. It is possible.
however. to demonstrate that generically there are an odd number of
points of the form (p,8) where (4.12) is satisfied and. similarly, an
odd number of the form (p, B). To make this plausible recall that the
functions f,(p. B) have the properties of excess demand functions of a
static pure exchange economy. It is well known that generically (in
this case. for almost all §) there are an odd number of equilibria of
such an economy. An even number, possibly zero. of pairs m and 8
are associated with paths that return to the same boundary 8 = . An
odd number. at least one, therefore cannot return. Our boundary
assumption implies that for 8 =< f < B, the prices that satisfy (4.12)
are uniformly bounded away from zero. Consequently. m(p. f)
remains bounded. and paths that start at § = g and do not return
must eventually reach the boundary = . Any path or loop may
intersect itself, but it does not, in general, do so where B=1(orgor
B) or where m = 0.
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mip.p)?}

4
i

Figure 4.1

The boundary assumptions also imply that m(p. ) >0 when =f
and m(p. ) < 0 when B =8 Consequently, any path that starts atg
and ends at B must intersect the line m = 0 an odd number of times.
Similarly. any such path must intersect the line B =1 an odd number
of times. On the other hand. every loop or path that starts and ends
at the same boundary intersects both m = 0 and =1 an even.
possibly zero, number of times. Each of these intersections corres-
ponds to a steady state. Generically, there is none where both m = ()
and = 1. Experimenting with different possibilities, we can easily
verify that any admissible graph must share with that in figure 4.1 the
property that there are an odd number of steady states where B=1
and m = 0 and an odd number where 2 1 and m < 0.

This theory has particularly strong implications when both types of
steady states are unique. As we have remarked above. Kehoe et al.
shows that this is always the case with gross substitutes. From the
diagram we see that the situation is the same as Gale's one good
case. The real steady state has < 1 if and only if m <0 at the
nominal steady state. and f>1 at the real steady state if and only if
m > () at the nominal steady state.
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3 Determinacy of Equilibrium Price Paths

We now focus our attention on the behavior of equilibrium price
paths near a steady state. In addition to the requirement that markets
clear in every period we require that prices converge to the steady
state. i.e. that (p,.p..\)/(p,. poet) | = (p. Bp)/I(p. Bp)ll at t — =,
We do this for two reasons. First, price paths that begin near and
converge to a steady state are the most plausible perfect foresight
equilibria. Agents can compute future prices using only local informa-
tion. If prices are not converging to a steady state. however. then
agents need global information and very large computers to compute
future prices. Second. these price paths are the easiest to study: to
determine the qualitative behavior of price paths near a steady state
we can linearize the equilibrium conditions. Paths that do not
converge may display very complex periodic. or even chaotic. be-
havior. It may be difficult to distinguish such paths from price
sequences that satisfy the equilibrium conditions for a very long time
but eventually lead to prices that are zero or negative, where excess
demands explode. making a continuation of the sequence impossible.

Determinacy of equilibrium price paths that converge to a steady
state may still leave room for indeterminacy. There may be paths that
do not converge to a steady state but nevertheless always remain
strictly positive and are therefore legitimate equilibria. Whether a
model has a determinate path that converges to a steady state is a
weak test. We shall establish, however. that there are robust exam-
ples of economies that fail even this test.

Consider again the conditions that an equilibrium price path must
satisfy:

zo(pr.m) + y(p,.p3) =0 (4.14)
fort =1 and

2P p) + ¥ (P p) =0 (4.15)

for > 1. Once p, and p, are determined (4.15) acts as a nonlinear
difference equation determining the rest of the price path. We begin
by asking how many pairs (p,, p,) give rise to the price path that
converges to a steady state (p. Sp). The stable manifold theorem
from the theory of dynamic systems described. for example, by Irwin
(1980) implies that. near (p. fp). these questions can generically by
answered by linearizing (4.15). We then ask how many pairs (p,. p,)
are consistent with equilibrium in the first period. This question can
be answered by linearizing (4.14). Pairs (p,,p,) that lie in the
intersection of these two sets correspond to equilibrium price paths.
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The dimension of this intersection can be deduced by a simple
counting argument. If this dimension is greater than zero. there is a
continuum of equilibrium price paths. If it is greater than unity.
relative prices are indeterminate: not even by exogenously specifying
the price level can we make price paths determinate. Details of the
arguments presented below are given by Kehoe and Levine (1985).

Making use of the fact that derivatives of excess demand are
homogeneous of degree minus one and that (p. Bp) is a steady state,
we can write the linearized system as

zo(p. m) + ¥(p. Bp) + D2y(p>» — Bp) + (Dyy + D zo)(py —p) =0
(4.16)

D:y(p,.y — B'p) + (Dyy + BD1z)(p, — B7'p)
+BDz(p,oy =B Tp) =0 (4.17)

where D,y is. for example, the matrix of partial derivatives of y with
respect to its first vector of arguments and where all derivatives are
evaluated at (p. fp). 8 shows up as a coefficient of D,z and D,z in
(4.17) because homogenity implies that D,z(8*p. B 'p) = B°7'D,z
(p. Bp). for example. while D,y(f"'p.B'p) = B''D\y (p.Bp).
Differentiating the homogeneity assumption (4.1) with respect to 6
and evaluating the result at 8 = 1 and (p,. p,. ;) = (p. fp) results in

D,vp + BD-yp =0
Dzp + BD.zp =0 (4.18)

Consequently. the linearized equilibrium conditions (4.16) and (4.17)
can be rewritten as

D>yp> + (Dyy + Dyzy)p, = Dyzyp — zo(p. m) — v(p. Bp) (4.19)
D-yp,., +(D\y+ BD-z)p, + D zp,., =0 (4.20)

Kehoe and Levine (1984b) have shown that D.yv is generically
nonsingular. Consequently. (4.20) can be solved for an explicit
second-order difference equation. Using a standard trick. we can
write this equation as the first-order system g, = Gq,_, where g, =

(p;. p,~ 1) and

G 0 1

= —ﬁD:_\‘_ID]Z _Dj.\'_l(D]_\' +/3D:Z) (421)

The stability properties of this difference equation are governed by
the eigenvalues of G. The homogeneity assumption (4.18) implies
that f is an eigenvalue of G since
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ol e

Differentiating Walras's law (4.2) and evaluating the result at
(Pi-piot) = (p. Bp) implies that

vp.Bp) +p'Dyv+ Bp'D iz =0

2p.Pp) + p'D-v + Bp'D.z =0 (4.23)

Consequently. unity is another eigenvalue since (4.23) and the steady
state condition (4.10) imply that

p'l—=PBD,z DG = p'[ - BD,z Dyy] (4.24)

In the case where = 1 these are generically the same restriction,
and we have information about only one eigenvalue.

It should now be clear why the case where n = 1 is so special: if
homogeneity and Walras's law are the only restrictions that economic
theory imposes on the dynamical system (4.15). then we can expect
to be able to pin down at most two eigenvalues of (4.21). In the case
where n = 1 this is all the eigenvalues, but in general there are
2n = 2 left to be determined by the parameters of the model. In fact,
Kehoe and Levine (1984b) prove that for any pattern of 2n eigen-
values, as long as (4.22) and (4.24) are satisfied and complex
numbers come in conjugate pairs, there exists (v. z) that satisfies all
our assumptions and gives rise to a matrix G with those eigenvalues,

We are interested in the set of initial conditions q: = (p,. p-) for
the linear difference equation ¢, = Ggq,_, for which q./lgll— q/lq
where ¢ = (p. Bp). This set is a subspace of R* determined by the
eigenvectors of G. Suppose that (x,, v)) € C™ is the eigenvector in
complex 2n-dimensional space associated with the eigenvalue 4,:

0 1 Xl _ . [x
i—ﬂD:y"diz ~Dsy D,y + ﬁD:z)i H = ii i(“”

The first n equations state that Y= Ax;. If the eigenvalues of G are
distinct. a condition that Kehoe and Levine (1984b) prove holds
generically, then solutions to the difference equation g, = Glg,_))
take the form

P - \ 21 X, o)
SRR 20

where the complex constants €ise« .. €2, are determined by the initial

conditions ,
Pri _ X X, 5
[P:J 2, [l,xi J (4.27)

=]
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To ensure convergence to the steady state (p. Bp). we need to put a
positive weight ¢, on the eigenvector (x,. A,x,) = (p. Bp) and zero
weights ¢; on eigenvectors (x;, Ax;) for which the modulus [2,] is
greater than f. i.e. we require that § is the dominant eigenvalue in
(4.26).

Let n° be the number of eigenvalues of G that are less than § in
modulus. Reorder the eigenvalues so that (x..A.x-).
(Xu+1+ ApsyX,ip) are the associated eigenvectors. Since eigenvectors
associated with distinct eigenvalues are linearly independent and since
complex eigenvectors show up in conjugate pairs, the n*+1 eigenvec-
tors (p' ﬂp)-(XZ* AZXZ)*' Coe (xn‘+1~ ’1n>+lxn’+l) Span an (nx + 1)'
dimensional subspace of R*". Initial values (p,. p.) that lead to
convergence to the steady state have the form

n+1
P _ 4 X 5
[p:J CI{BPJ * 2 [A,-x,] (4.28)

Besides yielding a path that converges to the steadv state rav.
(1. p2) must also satisfy the linearized equilibrium condition (4.19)
in the first period. Let us first examine the situation where m # 0. In
this case z, is not homogeneous of degree zero in p, alone. and.
since piD zy(p;. m)p, = —p zo(p,.m)=—m=*=0. D, z,p # 0: fiat
money. in fact. operates as numeraire. Consequently. (4.19) defines
an n-dinemsional affine subset of prices (p,.p.) consistent with
equilibrium in the first period. The intersection of this subset with the
subspace of prices that yield a path that converges to the steady state
generically has dimension (n*+ 1) + n = 2n = n* + 1 — n (< n).
Roughly speaking. we say that 2n — n®> — 1 of the 2n variables
(p1. p:) are pinned down by the requirement of convergence to a
steady state in (4.20) and n are pinned down by the equilibrium
condition (4.19): this leaves n* + 1 — n variables free. which can be
as many as n if n* = 2n — 1.

These are several cases of interest. First. if n*<n — 1. then
generically there are no equilibrium paths that converge to this steady
state. We call such a steadv state unstable. Second. if n* = n —1.
then stable equilibrium price paths are locally unique and. in a small
enough neighborhood of the steady state. actually unique. We call
such a steady state determinate. Third. if n* < n — 1. then there is a
continuum of locally stable paths. In fact. the (p,. p-) that generate
these paths form a manifold of dimension > + 1 — n. We call such a
steady state indeterminate. The (n° + 1 — n)-dimensional affine sub-
set of the corresponding linear system is. in fact. the tangent space to
this manifold at (p. fip). i.e. its best linear approximation.

Let us now consider the situation where m = . Since Zu 1S now
homogeneous of degree zero in Pi- Dyzyp = 0. There are two
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considerations that reduce the dimension of the subspace of initial
conditions that we are concerned with. First. since the equilibrium
conditions (4.19) and (4.20) are now homogeneous of degree zero in
p. py and p,. we can impose a price normalization and work in a
(2n - 1)-dimensional affine subset of B*". for example, by setting
pi=1. This allows us to fix the weight put on the eigenvector
(p. Bp) in (4.27). Second. since m = 0. the initial price pair (p,. p-).
and all subsequent pairs (p,. p,., ). must satisfy piv(p,. p2) = 0. This
implies that (p,. p,) cannot put any weight on the eigenvector (x;. x,)
associated with the eigenvalue A, = 1 in (4.27).
To illustrate the latter point, let us linearize the restriction
—pwy(pi. p2) = mat (p, fp):
=Py = +p'Dy)pi—p) — p'Dy(py— fp) = m (4.29)

Homogeneity (4.18) and Walras's law (4.23) imply that we can
simplify this to

Bp'Dizp, — p'Dayps = m (4.30)
Suppose that (x;. 4,x,) is an eigenvector of G. Then (4.24) implies
that

[Bp' D= —p’D:y]Mi,J:[ﬁp’sz ‘P'DL"]G{AXQ}

1t

=AlBp’'Diz —p'D-y] [Ax;

v

J (4.31)

Consequently. for all A, # 1.

. oDl Y] 1
Bp'Dyz D] |5 | =0 (+.32)
Premultiplying (4.27) by [8p' D,z —p’'D,y]. we obtain
', o ] e , o X,
[Bp' D,z p'D2y] [p;} = g,lc,-[ﬁp D,z p Dlv][l,x,}
(4.33)
m=c[fp'Dyz  —p'D,y] [i’]
J
where (x,, x,) is the eigenvector associated with A, = 1. This implies

that ¢, = 0 if and only if m = 0. (Notice that in case where m # 0
and B = | it implies that ¢; = 1 since (x;.x;) ={(p.p))

Suppose that m = 0. Let i* denote the number of eigenvalues of
G that satisfy |4;] < B excluding A, = 1 if B> 1. The set of prices
g, = (p,. p:) that satisfy —piy(p,. p») = 0 and the price normaliza-
tion and give rise to a price path that converges to g = (p:.Bp-)
forms an 7’-dimensional set. The set of prices g, = (p, p,) that
satisty —piv(p,.p.) = 0 and the price normalization and are consis-
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tent with equilibrium in the first period forms an (» —~ 1)-dimensional
set. Equilibrium price paths are associated with points in the intersec-
tion of these two sets, which generically has dimension 7* + (n — 1)
—@Cn-2)=r*=1-n(<n-1).

Although the eigenvalue A, =1 is irrelevant for price paths in
which m = 0. it is crucial for the behavior of paths where m # 0: if
m # 0 initially, then the price path cannot converge to a steady state
where 8 <1, since A, = 1 must receive nonzero weight in (4.2) but 4,
is an unstable root. This makes good economic sense: there can be no
equilibrium in which m # 0 that converges to a steady state with
B < 1. The exponential deflation would cause the constant nominal
money stock to become infinite in real terms. Although paths with
m # () can converge to a steady state where 8> 1, asymptotically the
real money stock disappears because of inflation.

A warning should be given about the generic nature of our results.
Although they hold for almost all economies. it is possible to think of
examples that violate them: when there is a single two-period-lived
consumer with an intertemporally separable utilitv function in each
generation. for example. both D,y and D,z have rank one. Conse-
quently. if there are two or more goods. we cannot invert D,y. In
this case. Kehoe and Levine (1984a) demonstrate that the situation is
essentially the same as that in a model with only one good in each
period: with nominal initial conditions there is at most a one-
dimensional indeterminacy. and with real initial conditions no inde-
terminacy is possible. These results are. of course. closelv related to
those of Balasko and Shell (1981) and Geanakoplos and Polemarcha-
kis (1984) cited earlier.

4 An Example with Three-period-lived Consumers

To construct an example of overlapping generations model with
relative price indeterminacy. we cannot look at a model with one
good per period and two-period-lived consumers. at a model with a
single two-period-lived consumer with intertemporally separable util-
ity in each generation. nor at a model with gross substitutes. In this
section we consider an example with the simplest possible structure
that allows relative price indeterminacy: there is a single good in each
period and a single consumer with additively separable preferences in
each generation who lives for three rather that two periods and who
has constant elasticity of substitution (CES) preferences with an
elasticity of substitution of 0.2. Balasko. Cass and Shell (1980)
present a simple procedure for converting such a model into one in
which consumers live two periods. Suppose that consumers live for &
periods. Redefine generations —k +2. =k + 1 .... 0 to be genera-
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tion 0. generations 1. 2..... k—1 to be generation 1. and so on.
Similarly. redefine periods. This procedure is illustrated in figure 4.2
for the case where & = 3. Notice that the number of goods in each
period and the number of consumers in each generation both increase
by a factor of & — 1.

In this transformation k — 1 period cycles become steady states. In
fact. we can use this transformation to reduce the study of paths that
converge to cycles of any finite length to the study of paths that
converge to steady states. It is still the case in the transformed model
that there are generically an odd number of steady states of each
type. real and nominal. By performing the transformation one period
at a time. we are able to demonstrate that the original model
generically has an even number of cycles of each type of every
length: we know that there are an odd number of steady states;
performing the transformation for k = 3. we know that there are an

Time peried
1 2 3 [ S 6
-1 x o o (o] o (o )
0
0 x x (o] 0 (o} (o] .
1 x x x (o (o] o
b3l
2 o x x x (o) [0}
Generation
3 (o] o x x x (o]
]2
3 (o] (o] (o] X x x
5 (o] (o] (o] (o} x x J
3
6 (o] (o] o [o} lo] x
] Nt A
1 2 3
x alive
O not alive

} generations or periods are redefined

Figure 4.2
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odd number of steady states and two cycles. and hence an even
number, possibly zero, of two cycles; and so on. This result tells us
nothing about the cycles of even length. If (p,. p,. p,. p2) is a
nominal steady state, for example, then so is (p,. p,, P> py). It does.
however. place restrictions on cycles of odd length.

Consider an economy in which the single consumer born in period
. where 1 = 1.2.. . lives for three periods and has the utility
function

1
u(cy, ¢y, c3) = " (a;ct + arch + a-ct) (4.34)

where a,. a,, a;>0 and b < 1. This is, of course. the constant
elasticity of substitution utility function with elasticity of substitution
n=1/1 = b). If the consumer faces the budget constraint

Pyt PiasCa ¥ Praacs = pw) + pw, + Piaws  (4.35)

where (w;, w,, w,) is his endowment stream, then his excess demand
functions are

3
a/"zplﬂ'—]wl
i=1 .
X (Pos Praye Pran) = — W, j=1.2.3 (4.36)
Ply-12alplil,
i=]
Notice that these functions are continuously differentiable for all

strictly positive prices. are homogeneous of degree zero. and obey
Walras's law:

szx(Pl- P+ pl+2) + P/+1X:(Pz- Pi+r- pw:)
+ PH:XR(/% P+ p/+3) =0 (437)

In addition to these consumers. there are two others, an old
consumer who lives only in period 1 and a middle-aged consumer
who lives in periods 1 and 2. The old consumer, consumer -1,
derives utility only from consumption of the single good in the first
period. so we need not specify a utility function. We endow him with
m_, units of fiat money. which may be positive. negative. or zero.
His excess demand function is

X§1(P1~m~1)=m—1/l71 (4.38)
The middle-aged consumer. consumer 0. has the utility function

1
uolca. c3) = -b'-(asz + axct) (4.39)

an endowment stream (wi. w9 of £00ds. and an endowment m, of
fiat money. His excess demand functions are
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Spmt, + m)
X(py. pa. my) = —=L —wl =23 (4.40)
P,"—lza,'-’ﬂp,!_"
i=]
The equilibrium conditions for this economy are
xpiom_y) = X8(p1, pa. my) + (P P2 p3) =0 (4.41)
fort =1,
X3(p1. o my) + P12 p3) + X(Pav p3, py) = 0 (4.42)
for s = 2 and
X3(p,-a, Pi-1.p) + Xa(p-y, PrDiny) + xi(p.. Pirts Prs2) =0
(4.43)

for > 1.

By analogy with the two-period case, let m = m_; + my. Multi-
plying the equilibrium conditions in the first two periods by the
respective prices and adding yields an analog of (4.7):

m=—pxp,.p-. p3) - p2x:(py. ps. p3) ~ paxi(ps. pi.py)
(4.44)
Repeated application of Walras's law (4.37) and the equilibrium
condition (4.43) implies that
M= =pXi(PiPir1s Praz) = PearX:(pPry Prars praa)
T PeiXi(Pris Praae Piis) (4.45)

for all ¢ just as in the two-period-lived model, the amount of fiat
money stays constant over time.

Steady states also have the same structure as in the two-period-
lived model. There are two types, real steady states in which B#1
and

m=mx(L B ) = Bra(l, B, B2) — Bxy(1.B. ) = 0 (4.46)

and nominal steady states in which. =1 and m # 0.
In the three-period case. the linearized equilibrium conditions are

ﬁJDl’r3pl—l + (ﬁ3D2x3+ﬂDlx2)pr—l + (B Dsx; + Dix))p,
+ (BD3xs+Dsx))p,,, + Dixip., =0 (4.47)

Here all derivatives are evaluated at (1. B. B°). The eigenvalues are
the roots of the corresponding fourth-order polynominal. These come
from a 4 x 4 matrix like that jn (4.29).
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Consider the following parameter values:

Period 1 2 3
a; 2 2 1
w, 3 15 2
where b = —4. Notice that the representative consumer discounts

consumption over time, has a hump in his life cycle earnings profile
and has an elasticity of substitution in consumption over time of
1/(1 +4) = 0.2. This economy has one nominal steady state and
three real steady states. They can be found by tracing out the graph
of the function m(B) given by (4.46). Real steady states occur where
m(f3) = 1. This is illustrated in figure 4.3.

To determine the values of the roots of the forth-order polynomin-
al that corresponds to (4.47) we start by evaluating the partial
derivatives of the excess demand functions (4.40) at (p,. p,oy. pran) =
(1.8.8%). At B =1, for example, these derivatives are

Dx, D-.x, D:x,
D, x, Dx, D:x,
D]X} D:X_q D}A‘;

[—2.2901() 3.28375 —().99365J

—0.89664 1.89029 —0.99365
—0.78057 2.85867 —2.07810

(Notice that. since this matrix has some negative off-diagonal ele-
ments. (x,. x,. x;) violates gross substitutability.) The polynomial
that we are interested in is

—0.78057 + 1.962304 — 2.477914% + 2.290104% ~ 0.99365,* = 0
(4.49)

(4.48)

One of the roots is. of course. 4 = 1. The other three are 0.93286.
0.18594 + 0.89862i and 0.18594 — (0.89862/. as can easily be verified.

The roots at all four steady states are listed in table 4.1. The
modulus of the pair of complex conjugates at the steady state where
B =0.93295 is 0.84513; where S = 1 it is 0.91766.

Let us first focus our attention on the steady state where
B =0.93295. Let m_; = m, =0 and let wh = 10.84636 and w! = 2. It
is straightforward but tedious to check that P prps.py) =
(1.0.93295. (0.93295) . (0.93295)") satisfies the conditions for equilib-
rium in the first two periods. Since B = 0.93295 is a steady state. this
is a legitimate equilibrium price path. Our earlier arguments imply
that this is only one continuum. Since m_; = m, = (0. the excess
demands of generations —1 and 0 are homogeneous of degree zero
and we can normalize prices by setting p, = 1. We can then choose
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-4
Figure 4.3

Table 4.1

b Other roots
1 0.04239 l 0.47907 —~0.01380
2 0.93295 1 0.17245 + 0.82735i
3 i 0.93286 0.18594 + 0.89862i
4 53.8056 i 2.04305 —121.45544

Dis1/p, = 0.93295 since the modulus of the root governing stability is
less than 0.93295. The 0ot A = 1 is, as we have explained, irrelevant
since m = () cverywhere along this price path.

In fact, the vajue of € need not be very small: every P-/p, in the
interval 0.26703 < P2/pi < 16.67676 determines a distinct equilib-
rium.  Figure 4.4 illustrates  some possibilities.  Notice that
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P2/pi = 0.26703 determines an equilibrium that converges to the
steady state where B =0.04239. Otherwise, aJ] values of P2/p,
outside this intervaj determine paths that eventually lead to g,
negative price.

Now consider the case where m_; = —0.08825 and m, = 0.18634.
Here it can pe checked that P\ pa. pa. P =(1.1.1. 1) satisfies
(4.41) and (4.42). In this case the excess demands of generations — |
and 0 are not homogeneous and we are pot permitted a price
normalization: money itself serves ag numeraire. We can now choose
Pi=1+ ¢ and P2=1+ & for any £, and ¢, smal] €nough and yse
(4.41) and (4.42) to solve for p, and P4 Again using (4.43). we can
solve for an equilibrium price sequence that converges to unity where
p/-rl,/pl =1

All these €quilibria are Pareto efficient: those that converge to the
steady state where B =0.93295 g assign a finijte value to the
aggregate endowment. and so the standard proof of the first welfare
theorem due 1o Debreu applies. Those that converge to the steady
state where f = | satisfy the more general conditions for efficiency
developed by Balasko and Shel} (1980) and Burke (1987).

The relative price indeterminacy exhibited in thjs example does not
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need one of the consumers to come into the first year with negative
fiat money. Suppose. for €xample, that m_, = 0. that m, = 0.09809.
and that wi = 10.9346] and wi = 2. Then (P P2 ps.py)
=(1.1.1.1) satisfies the equilibrium conditions in the first two
periods. Again there is a two-dimensional indeterminacy. (Setting
m_y=m, =0 does not. however. result in equilibrium conditions
that are satisfied by p, = (0.93295)"71))

Notice that this example also has steady states of the more familiar
sort: any equilibrium that converges to the steadv state where
B =10.04239 is determinate. Any equilibrium that converges to
= 53.80562 and has no fiat money is also determinate. There is a
one-dimensional manifold of paths that converge to the steady state if
there is fiat money. however.

Choosing the parameters of this type of model suitably, we can
illustrate other possibilities for behavior of equilibrium price paths
near steady states. For example, the following parameter values
correspond to an economy with four steady states with fs and other
roots that are the reciprocals of those given above:

Period 1 2 3
a; 1 2 2
w, 2 15 3
where b = —4. Here the steady state where =1 is unstable: there

are no paths that can approach it unless. by pure chance, (1. 1. 1. 1)
satisfies the equilibrium conditions in the first two periods. The
steady state where B = 1.07187 = (0.93295)"! is also unstable for
price paths with no nominal debt. There are. however. determinate
price paths with nonzero nominal debt that converge to this steady
state.

An essential feature of all the above examples is that they are
robust: we can slightly perturb the parameters. and even the function-
al forms, of the demand functions of all the consumers. including the
initial old consumers. and still have economy whose equilibria have
the same qualitative features. We choose initial old consumers so that
the steady state prices satisfy the equilibrium conditions in the first
two periods only to make it €asy to verify that there are prices that
satisty these equilibrium conditions and also converge to the steady
state.

As we have explained. the examples of this section are special
cases of a model with two two-period-lived consumers in each
generation and two goods in each period. The main reason for using
the three-period-lived model for examples is to keep the specifica-
tions as simple as possible. Suppose that consumer 4. where h=1.2,
in generation ¢ solves the problem
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maximize"= [ai"(e))" + aP(c}) + ali(cl, ) + a3'(c7, )]
/
h <
. s , (4.50)
subject to Z Z p{=K—IC:+k—] = Z 2 Ploxwl
j=lk=|

,
Ifwesety, =y, = p, ai'=aP =g, ol = a¥ =a, ala

5

taro

and a3' = a1 = 0. and similarly set w//. then this model is formally
the same as the three-period-lived model. While this model needs 18
parameters to specify it. of which 15 are not subject to normalization,
the simple three-period-lived model needs only seven, of which five
are not subject to normalization. It is still the case, however. that any
small perturbation in the parameters of the two-period-tived mode]
results in an €conomy whose equilibria have the same qualitative
features as do the examples that we have presented.

5 Implications for F inite Horizon Models

There is a close relationship between models with infinite time
horizons and models with long. but finite. time horizons. On the one
hand. models with infinite horizons are only interesting in so far as

truncated mode].

One way to truncate the model at period T would be to fix the
expectations of what prices would be in period T + |. Suppose that
(p. B)is a steady state. We could require that p,., = Bpr in the
terminal equilibrium condition

z(pT—l-PT)+,“(pT-pT‘J) =0 (4.51)

orthat pr ;= p,Bp. (See Auerbach. Kotlikoff and Skinner (1983)
for an e€xample of this approach.) Another. sometimes equivalent,
Way 1o truncate the mode] would be to specifv a terminal young

This type of truncated model. which involves a finite number of
variables in the same number of equilibrium conditions, generically
has determinate equilibria. Furthermore. if the truncation date 7 js
large enough. then an equilibrium of the truncated model serves as 4
reasonable approximation to an equilibrium of the actual model. at
least in the early periods. In fact. the usual proof of the existence of
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equilibrium for the infinite horizon overlapping generations model
depends on this property of the truncated mode| We start by
established the existence of equilibrium for the truncated model. We
then construct a candidate for an equilibrium price path for the
infinite horizon mode] by augmenting a vector of €quilibrium prices
(P1.P>. .. .. py) for the truncated model with Prices pr.\. pro,. . ..
that are arbitrary. Letting the truncation date increase, we generate
an infinite sequence of such price paths. Since we can use the

we need to consider subsequences converging.

Here convergence means convergence in the product topology: for
any €>0 and any T there €xists some 7' > T such that. if
(Propsc.. ) is an infinite price path that satisfies the equilibrium
conditions for the model truncated at 7’. then (P1-p2. . .)is within e
of ‘an equilibrium of the infinite horizon model for periods

I.2... .T". Notice that we do not claim that thjs price path is within
€ of an equilibrium of the infinite horizon model for periods T + 1,
'+2 ..., T Nor. unfortunately, can we make any strong state-

ments about the relationship between T. T'. We do not know how
long a truncation date is needed to approximate an equilibrium for
ten periods, for example.

Two questions about this approximation naturally arise. How does
indeterminacy in the infinite horizon model, where 7 > 5 — 1.
manifest itself in the truncated model? How does instability. where
A <n -1, manifest itself> To answer the first question. let us
consider an infinite horizon model with a continuum of equilibria that
converge to the same steady state (p. Bp). Choose two different price
paths in that continuum, (5,. P>...) and (p,. p,.. . -). For large
enough T both P and pr,, are very close to the steady state price
vector p and. consequently, very close to each other. (We can think
of normalizing the price sequence not by requiring that pi=1 but
rather by requiring that ph = 1.) By truncating the mode] at period
T using the terminaj condition (4.51) with Pr+1 = Pr.\. we generate
D1, pa... .Pr) as an equilibrium; with Prei = Dr.,. we generate

~ ~

(P po.. . .. Pr). No matter how large the difference between 5, and
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truncated model. sensitivity that becomes more and more acute as the
truncation date becomes larger and larger. -

Another way to view this problem of indeterminacy credited by Calvo
(1978) to Rolf Mantel is to consider the difference equation

z(pT—l—.w pT—s) + _V(PT—5~ pT+l—:) =0 (452)

where s =1, 2... ., that runs backwards from the terminal condi-
tions. It is trivial to show that the eigenvalues of the linearized’
versions of this difference €quation are the reciprocals of the eigen-
values of the original system. If the original system has too many
stable eigenvalues, the backwards system has too few and is therefore
unstable: small changes in terminal conditions cause large changes in
prices early in the price path.

Let us now turn our attention to the second question, the question
of how instability manifests itself. Here we seem to be faced with a
dilemma: We know that, if we truncate the model by requiring that
Pr«i = llp7iBp. we can compute an approximate equilibrium for the
infinite horizon model. We also know. however. that it is extremely
unlikely that for the infinite horizon model will have an equilibrium
price path where pr,, is close to these values. The solution to this
dilemma lies in the nature of the approximation. We only know that
the equilibria of the truncated model are close to the equilibria of the
actual model in early periods; later they may diverge sharply. To
approximate the equilibria of an infinite horizon model near an
unstable steady state for any fixed number of periods we may have to
choose a very large truncated date.

As we would expect. the problems of indeterminacy and instability
represent two sides of the same coin. Indeterminacy manifests itself
as sensitivity to terminal conditions. The larger the truncation date.
the more sensitive prices early in the price path are to terminal
conditions. Later prices. however. which all converge to the steady
state. are relativelv insensitive. Instability. in contrast. manifests itself
as a need for a very large truncation date. The larger the truncation
date is. the less sensitive prices early in the price path are to terminal
conditions. Later prices, however. may diverge sharply from equilib-
rium prices for the actual model.

To see how indeterminacy manifests itself in a truncated model. let
us consider again the simple three-period-lived model of the previous
section. Figure 4.5 illustrates three equilibria that ali converge to the
steady state where 8 = 0.93925. The values of the price ratios Do /p,
at these three equilibria are listed in table 4.2. Each of these three
equilibria could be generated as an equilibrium of a truncated model
with a suitable choice of a truncation date and terminal condition
Prayipr. If. for example. we truncate the model at T =20 and
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Table 4.2
Pl + I/PI
1 0.60000 1.05000 15.00000
2 0.59283 1.01905 10.76314
3 1.6288 0.88803 1.59627
4 1.38525 0.83980 0.30447
5 0.91629 0.94206 0.10258
6 0.66010 1.01934 0.47445
7 0.81814 0.95572 2.58841
8 1.18550 0.87554 1.77892
9 1.11307 0.89228 0.64069
10 0.82698 0.96736 0.38120
15 0.82304 0.96522 0.60597
20 0.85527 0.95375 0.81664
25 0.89286 0.94270 0.94927
30 0.92050 0.93544 0.99605

impose the terminal conditions P2 = 0.85527p,,, then we generate
the first equilibrium. The terminal conditions P2 =0.95375p,, and
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Tespectively. Notice that very small differences jn the terminal condi-
tions cause large differences early in the price paths. Notice too that
this SENSItivity to termina] conditions is more acute if we truncate at
T = 30 than it js if we truncate at 7 = 20.

One way to test a mode] for indeterminacy IS t0 linearize the
equilibrium conditjons at the steady state of interest and to compute
the eigenvalues of the matrix of the corresponding linear difference

the three equilibria of figure 4.5 along with the corresponding
solutions to the linearized system.

Another way to test for indeterminacy IS to choose g large
truncation date to vary the terminal conditions. Smal] changes in
terminal conditions producing large changes in injtig] prices are
symptoms of indeterminacy. Although this test 1s the simpler of the
twWo to perform, evaluating its resyjts Is more difficult. What. for
e€xample, js a suitably larger truncated date? What works for one
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model may not work for another. This is because one model may
have eigenvalues of its linearized system that are very close to the
steady state values of 8 in modulus while the other may not.

6 Gross Substitutability and Determinacy

Although the overlapping generations model admits robust examples
with indeterminate equilibria. such as that in the previous section, it
also admits robust examples with determinate equilibria. The natural
question is how to distinguish those parameter values for which the
model has indeterminate equilibria from those for which it has
determinate equilibria. The answer given in the previous section
involves choosing numerical values for the parameters. linearizing the
equilibrium conditions at the steady state of interest and computing
eignvalues. In this section we explore one class of examples for which
all this work does not have to be done: if the excess demand
functions y and z exhibit gross substitutability. an easily checked
condition. then the model has determinate equilibria if there is no
nominal debt and a one-dimensional indeterminacy at most if there is
nominal debt. See Kehoe et al. (1986) for a more detailed discussion.

In a static pure exchange model with n goods we say that an excess
demand function f(p) exhibits gross subtitutability if an increase in
the price of goods i. all other prices remaining the same. causes the
¢xcess demand for all but good i to rise. If f is continuously
differentiable. this condition holds in a neighborhood of price vector
P if (3f;/3p,)(p) > 0 for J#i. In an overlapping generations model
this condition holds near a steady state (p. fBp) if all the off-diagonal
elements of the 2n x 21 matrix

D,v Dy

are positive. The excess demand function in the example in the
previous section does not exhibit gross substitutability since the
matrix (4.48) of partial derivatives has negative off-diagonal elements.
Beware that when the three-period-lived model is transformed into a
two-period-lived model with two goods per period some of these
off-diagonal elements become zero and strict gross subtitutability is
lost. Since the analysis of this section can easily by extended to
handle this case of weak gross substitutability with a mild indecom-
posability requirement. however. we shall ignore this minor technical
detail (see. for example. Arrow and Hurwicz 1960).

The off-diagonal elements of the matrix of partial derivatives of the
demand functions (4.36) used in the previous section take the form
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Notice that. if w, > 0. this expression is always positive when n>1,
when 1 < 1. however. it may become negative. This is a well known
feature of demand functions derived from CES utility functions.
including functions that nest CES utility functions for consumption
within a single period (such as those used by Auerbach. Kotlikoff and
Skinner. 1983): to guarantee gross substitutabilitv. the elasticity of
substitution between any two goods must be greater than or equal to
one. Unfortunately, a large number of empirical studies indicate that
the elasticity of substitution in consumption over time is substantially
lower: somewhere between 0.07 and 0.51 centered around approx-
imately 0.2 (see Auerbach, Kotlikoff and Skinner, 1983: Mankiw.
Rotemberg and Summers. 1985). An excess demand function arising
from a CES utility function with n < | may. in fact. exhibit gross
substitutability near a steady state (p. fip). but this must be checked
for by evaluating all the off-diagonal partial derivatives of yand z.

To clarify the role that gross substitutability plays in guaranteeing
determinacy of equilibria in overlapping generations models. let us
recall why it guarantees that a static pure exchange model has a
unique equilibrium (see. for example. Arrow and Hahn. 197]. pp
221-7). Suppose. to the contrary. that an excess demand function f
exhibits gross substitutability and has two equilibria. two strictly
positive vectors p and P, not proportional to each other. such that
fp) = f(p) = 0. Consider the ratios Pi/b..where i = 1., ._p: let v
be the largest such ratio, and suppose it is achieved for good k.
Homogeneity implies that f«(vp) = 0. Now raise every price vp, for
which v5 . <p, until it equals p,. Since p is not proportional to p,
there is at least one such price. Gross substitutability implies that. as
cach of these prices is raised, f« increases. which implies that
fi(P) > 0. This contradicts the assumption that both p and p are
equilibria. Consequently, f cannot have muitiple equilibria,

Let us now apply this argument to the overlapping generations
model. We first establish that. in the case with no nominal debt. the
equilibria that converge to a steady state (p, p) are determinate. We
start by proving a slightly different result: if Zy. as well as v and z,
exhibits gross substitutability. then there is at most one equilibrium
that converges to (p. Bp). Suppose. to the contrary. that z,,. y and z
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all exhibit gross substitutability and that there are two such equilibria.
two sequences of price vectors (p,. p»....) and (p,. p-....). not
proportional to each other, that satisfy the equilibrium conditions and
converge to the same steady state. Again consider the ratios j| Di.
where i = 1.....nand ¢ =1, 2. ... Since j, and p, both converge
to the same steady state, lim,_.p!/p! = lim_.|7 |/Ip . for i =
I.....n. This limit may be the maximum ratio. it may be the
minimum ratio. or it may be neither. It cannot. however, be both the
maximum and the minimum since the two sequences are not prop-
ortional. Consequently. either the maximum or the minimum must be
achieved for some v = j{/p}. If 1>1. then we consider the equation

2P p) + ¥ P i) = 0 (4.54)

Homogeneity implies that z*(vp,_,. vp,) + y(op,) = 0. If v is the
maximum ratio. raises every price vp: < j.where t=r—1,r. 1+ 1.
If v is the maximum. then gross substitutability implies that z%(p,_,.
P} + ¥*(B,. piey) > 0: if v is the minimum. then this expression is
negative. Either situation contradicts the assumption that (5,. ... . .)
is an equilibrium. If 1 = 1. then we apply the same argument to the
equation

25(p1. 0) + ¥4 (py. p2) = 0 (4.55)

Consequently. there cannot be multiple equilibria that converge 1o
the same steady state.

This result implies that. if y and z exhibit gross substitutability,
then equilibria that converge to the same steady state are determin-
ate. regardless of z,: our earlier discussion indicates that we can
generically rule out the possibility of indeterminacy if we can gener-
ically rule out the possibility that the matrix G in the linearized
equilibrium conditions satisfies 7° > n — 1. Suppose. to the contrary,
that v and : are such that G has i* > n — 1. Let us construct an
excess demand function z, such that zy(p. 0) + y(p. pp) = 0.
Consider the Cobb~Douglas functions

n

2piw

AP 0) =a T ———w' =1 .n (4.56)

P
Choose { > 0 large enough so that £ > —v/(p. fBp). forj=1...., n.
Set a,=p//TLip'. where (p'..... p") is the steady state price
vector. and set w/ = { + v/(p. Bp). It is now trivial to check that. for

all p,. (82(/3pi)(p1) > 0 for i # j and that (p. Bp. Bp....) is an
equilibrium for this economy. Since * > n — 1. we know from our
previous analysis that there is a continuum of equilibria. This is a
contradiction. however. since we have alreadyv established that there
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can be at most one equilibrium.

Let us now argue that. in the case with nominal debt. there is at
Most a one-dimensional set of equilibria that converge to the same
steady state. The argument is similar to the previous one. We start by
proving that. if we fix the ratio between the price of that money and
some index 7(p,) of prices in the first period. m = 7(p,)u where uis
4 nonzero constant. then there is at most one equilibrium that
converges to a given steady state. Let 7(p,) be any price index. that
IS positive and homogeneous of degree one. e.g. m(p,) = pi. We now
say that z, exhibits gross substitutability if there exsists such a price
index such that an increase in pi causes zj, - mpm)j # i, to rise.
An argument identical with that above establishes that, for any given
m. there is at most one sequence (p,. p.....) that converges to a
given steady state and satisfies the equilibrium conditions. As we vary
u. however. we may allow additional equilibria. This implies that
there is at most a one-dimensional set of equilibria and. again arguing
as above. that it must be the case that n*<n. We now use the excess
demand function

Zp"w’ +m
zi(py. m) = a, = W/ (4.57)
and again set a, = p'/Zp and wi = ¢ + Y(p. Bp).

7 Nonstationary Models

Thus far we have only considered stationary models and equilibrium
price paths that converge to steady states of such models. In this
section we indicate how our results can be extended to encompass
models with some nonstationary structure and equilibrium price paths
that converge to cycles of any finite length.

Let us first explain how our resuits can be extended to models with
4 constant rate of population growth. Suppose the demands of
generations ¢ are

yp., Pivr) = 01'_1)’(;?,- Dis1)
(4.58)

Zz(Pr« P,+1) = a/’_lzl(pr- P:+1)

Here a -1 is the rate of population growth. With a suitable
redefinition of prices and excess demand functions. this mode] can be
transformed into one we have been working with. Let p.=a'p,
.‘A'(pwpurl) = avi(p,. ap,,) and 3(P:-Pr+1) = z(p.. ap,.). Notice
that ¥ and 2 are homogeneous of degree zero if v, and z, are.
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Notice too that if v, and z; satisfy Walras's law

p;yl(pz* P:+1) + p;+121(P,~ P:+1) =0 (459)
then so do  and 2:

0=a""phy(a""pa""p,. ) + a”'piazi(paT'p L) (4.60)
= ﬁ/,f(ﬁr ﬁrﬂ) + .5;+ lf(ﬁv ﬁw])
Finally, notice that if p,, r = 1, 2. ... satisfies the equilibrium
conditions

0= zr—l(P:—hP:)"’yl(P:-PH]) (461)
then p,. 1 =1.2, .. satisfies the corresponding conditions
0=a""z,(a*"p,_,. a'" P+ a v p, ap,,) (4.62)

E(ﬁ/—h ﬁr) + jj\(ﬁv ﬁH-])

This transformation is obviously invertible: if we know p.. ¥ and
2. and the growth factor a. we can recover p,. y, and z,. Nominal
steady states are those where P, = p.\. which is equivalent to
P. = ap, .. This implies Samuelson's result that the rate of interest
at such a steady state is. in fact, the growth rate of the population.

Arbitrary forms of nonstationarity can be incorporated into our
framework as long as the model is stationary for all generations after
some generation 7. In this case the equilibrium conditions for the
first T + 1 periods serve the same role that the equilibrium conditions
for the first period do in the stationary model. Generically. they
determine all but one of the price vectors p,. p,... .Pr+1. The
remaining price vector may. or may not. be determined by the
conditions that p; and Pr+1 give rise to a price path that converges to
a steady state when viewed as initial values for the difference
equation corresponding to the remaining equilibrium conditions. The
analysis of relative price indeterminacy remains the same.

Geanakoplos and Brown (1985) and Santos and Bona (forthcom-
ing) have extended our results to more general nonstationary models.
They find that. just as in stationary models. there are potentilly n
dimensions of indeterminacy if there is fiat money and n — 1 dimen-
sions if there is not. While these results are of considerable theor-
etical interest. they have little relevance for applied models. If
nothing else. even to store all the parameters of a truly nonstationary
model would require a computer with an infinitely large memory.

A restrictive aspect of our analysis is that we have only analvzed
price paths near steady states. In fact. however. our analysis imme-
diately extends to price paths near any cvcle of finite length. Recall
that. when we redefine generations, time periods and goods to
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convert the three-period-lived mode! into a two-period-lived model.
two-period cycles become steady states. In general. suppose that a
model has a cvcle of length k. i.e. that Prsi Pisrec o i prg) =

BP i Progane . .. p,) satisties the equilibrium conditions. Suppose
we redefine generations. time periods and goods so that generations
L. 2.... k are now generation 1 and so on. The cvcle now

corresponds to a steady state of the redefined model.

8 Concluding Remarks

Our results should be troubling to researchers interested in applica-
tions of the overlapping generations model. A model that does not
give determinate results is not very useful for doing policy analysis.
Unfortunately. the problem of indeterminacy of equilibria does not
seem to be confined to pure exchange overlapping generations
models. Muller and Woodford (1988) have extended the results
presented here to stationary models that take into account produc-
tion. including storage. infinitely lived assets and infinitely lived
consumers. They find that. although the presence of infinitely lived
assets. infinitely lived consumers or production may rule out nominal
debt and inefficient equilibria. it does not rule out indeterminacy.
They are able to identify a number of conditions that do rule our
indeterminacy. however, just as we identify gross substitutability as
such a condition in the pure exchange overlapping generations model.
One obvious direction for future research is to find easily checked
conditions that imply that a model has determinate equilibria. A
warning should be given about the nature of our gross substitutability
result. There is no presumption that gross substitutability implies
determinacy of equilibrium in models with production. In static
models with production, for example, gross substitutability in con-
sumption does not imply uniqueness of equilibrium (see Kehoe.
1985).

It seems inevitable. however. that some very reasonable models
have indeterminacy equilibria. Perhaps we are wrong to employ the
hypothesis of perfect foresight. With adaptive expectations, for exam-
ple. equilibrium price paths are generically determinate. Is there
some general and economically meaningful way to choose a perfect
foresight expectations mechanism that gives rise to determinate
equilibria? If not. how far do we have to depart from the perfect
foresight hypothesis to obtain determinacy?

That the overlapping generations model seems plagued by indeter-
minacy is not a satisfactory justification for completely abandoning it
in favor of the model with a finite number of infinitely lived
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consumers. As Gale (1973) points out. “the reason for considering a
population rather that a fixed set of agents is that the former is what
in reality we have. the latter is what we have not™. To build a useful
intertemporal equilibrium model. however. it would be necessary to
address the issues we have raised in this paper.

Note

The research persented in this paper was funded by Grants No. SES
82-09448 and No. SES 85-09484. Raees Hussain assisted with the figures,
and Jon Burke constructed the numerical examples.
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