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1. Introduction

In this paper, we study games that admit both cooperative behavior and

opportunistic behavior as possible Nash equilibria.  We utilize a model of evolutionary

learning to determine when one outcome emerges rather than the other.

Our evolutionary model assumes that players learn from other players through a

process of imitation: Typically, when a player changes his behavior he will choose the

best strategy used by other players. Sometimes the player will imitate some other player

regardless of how successful this player is.  In addition, there is a small probability that

the player innovates, that is, introduces a strategy currently not in use by any other player.

We assume that an individual is far more likely to imitate an existing, possibly sub-

optimal, strategy than to adopt a strategy that is not in use by any other player.

Players are matched into pairs to play a symmetric game.  We consider both

global matching, and the local interaction model of Ellison [1993]. Unlike standard pair-

wise matching games, we assume that prior to choosing an action each player receives a

signal that is informative about the opponent’s strategy.  A strategy for a player is a map

from possible signals to actions.  Players must choose a strategy prior to observing the

signal and the chosen strategies determine the probability distribution over signals.  An

interpretation of this recognition-technology is as a model for the detection of ‘rule-of-

thumb’ decision-making: players are committed to a particular rule-of-thumb because it

is too costly to change behavior in any particular match, and furthermore, players can

(perfectly or imperfectly) identify opponents’ rules-of-thumb either because (say) past

interactions are observable or else (say) because such rules manifest themselves

observationally through language or involuntary gestures at the time of the match

(blushing when telling a lie).

Consider the following example. Suppose the underlying game is a Prisoner’s

Dilemma. Further suppose that there is a signal that identifies when both players use the

same strategy: that is, both players receive the signal “same” if and only if they choose

the same strategy.  Consider the strategy that takes a cooperative action if the player

observes the “same” signal and a punishment action otherwise.  Clearly, it is optimal for

a player to adopt this strategy when he expects his opponents to use it.  On the other

hand, consider the strategy that defects regardless of signal.  Again, this rule is optimal
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whenever an opponent is expected to use it.  With a sufficiently rich information structure

these games typically have multiple equilibria that resemble the folk theorem of repeated

games.  Our evolutionary model of imitation allows us to characterize the behavior that

emerges in the long-run.

When it is possible to identify the opponent’s behavior without error, we show

that the long-run equilibrium is efficient. If we observe the system through time, we may

also observe brief bursts of conflict in which players attempt to maximize the difference

between their own payoffs and that of players using an opposing strategy.

We also study, albeit in a more restricted set of environments, the long-run

outcome when identification of opposing strategies is imperfect. Here we show that in the

long-run strategies that are informationally dominant emerge. Informational

imperfections lead players to place too much weight on their own self-interest relative to

both the common good and the punishment of opponents. In particular, if information is

sufficiently poor, the static Nash equilibrium of the underlying game emerges as the

unique long-run outcome. There are a variety of intermediate cases in which the intensity

of cooperation and conflict depends on how reliably the opponent’s strategy can be

identified. In some circumstances, the unique long-run equilibrium may actually be worse

than the static Nash equilibrium. In all cases, behavior may be interpreted as the

maximization of an altruistic/spiteful utility function, where the degree of altruism or

spite depends on how likely the opponent is to be the same type.

The idea that players may receive information about their opponent’s behavior

prior to choosing an action appears in Frank [1987]. There is a substantial literature on

evolution with positive assortative matching, where players are more likely to be matched

with others who are playing the same strategies (see Bergstrom [2002]).

Both Robson [1990] and Kim and Sobel [1995] consider a setting where players

can send cheap-talk messages prior to choosing an action.  Kim and Sobel [1995] show

that in pure coordination games with pre-play communication only the efficient

equilibrium emerges as the stable outcome of their evolutionary dynamic.  Kim and Sobel

[1995] also show that for general games there is a large set of evolutionarily stable

outcomes.  Models based on cheap-talk communication face the difficulty that defectors

can mimic the message of a cooperative strategy at no cost.  As a consequence, it

becomes relatively easy to destabilize cooperative behavior.  Binmore and Samuelson
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[1990] analyze evolutionarily stable equilibria played by finite automata.  In their setting,

automata can use initial moves to identify each other.  They provide an equilibrium

refinement that ensures that efficient equilibria emerge in a repeated games setting.  But

as in the case of cheap talk communication, these initial moves of a cooperative machine

are easy to imitate by selfish deviators. Therefore, in our evolutionary framework the

approach of Binmore and Samuelson [1990] would run into the same difficulty as the

cheap talk model.

Pre-play communication in our model is not cheap talk.  Players cannot imitate

the signals of other players without imitating their behavior.  This makes it easier to

sustain cooperative behavior in our model.  As a result, we are able to pin down the long-

run stable outcomes in more complicated games than, for example, the pure coordination

games studied by Kim and Sobel [1995].  In section 6, we briefly consider the case where

strategies can “masquerade” as cooperators while playing a selfish action.  Whether such

a free-riding strategy emerges depends on how costly it is to imitate the signals generated

by other strategies.

Our evolutionary model stems from existing work on evolution in economic

systems. In two influential papers Kandori, Mailath and Rob [1993] and Young [1993]

showed how introducing random innovations (mutations) into a model of evolutionary

adjustment enables predictions about which of several strict Nash equilibria will occur in

the very long run. Key to this result is the possibility that strategies that perform poorly

may be introduced into the population in sufficient numbers through innovation that they

begin to perform well. Using this method, they and other researchers have been able to

characterize when cooperation will emerge in coordination games using the criterion of

risk dominance. Ellison’s [1993] local interaction model gives a plausible account of how

this evolutionary adjustment can take place over sensible amounts of time.

In this paper, we give a different account of the spread of new strategies.  Once a

player introduces a new strategy, a process of imitation propagates the innovation. We

think this is a plausible account of how new ideas spread. This modified propagation

mechanism also makes it easier to find long-run equilibria.  First, the long-run limit

contains only pure strategies. Second, it is sufficient that a strategy profile beat all others

in pair-wise contests. As we illustrate through examples, this is implied by, but weaker

than, the criterion of ½-dominance proposed by Morris, Rob and Shin [1993].
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There are several other papers that analyze models of imitation and mutation.

Dutta and Prasad [2004] analyze a model that is similar to ours in that it considers both

imitation and mutation of strategies.3  Dutta and Prasad assume that players choose an

unconstrained best response (when they do not imitate or make errors) while our model

assumes that players choose a best response from the set of strategies used by other

players (a relative best response). More importantly, Dutta and Prasad focus on games

with two strategies while our focus is on games with relatively complex strategy spaces.

Vega-Redondo [1997] analyzes a stochastic process where players imitate the best

strategy of opponents and occasionally mutate to a random strategy.  Our model

essentially takes the evolutionary process of Vega-Redondo [1997] and adds to it random

imitation. The addition of random imitation makes it possible to find a simple

characterization of the limiting distribution. Eshel, Samuelson and Shaked [1998]

consider a model where players imitate neighboring players who earn a high payoff.

They consider a game with two strategies and show that cooperative behavior will

emerge in the long-run evolutionary equilibrium. In contrast to our model, players in their

model do not play a relative best response and the result is sensitive to the form of

interaction. Schlag [1998] considers a multi-armed bandit setting and asks which rule

from a given class of imitation rules maximizes welfare.

Dealing with stochastic evolutionary models more broadly, Bergin and Lipman

[1994] show that the relative probabilities of different types of noise can make an

enormous difference in long-run equilibrium; here our process of imitation gives a

particular theory of how those relative probabilities are determined. Van Damme and

Weibull [1998] study a model in which it is costly to reduce errors, and show that the

standard 2x2 results on risk dominance go through. Johnson, Pesendorfer and Levine

[2000] show how the standard theory can predict the emergence of cooperation in a

trading game with information systems of the type introduced by Kandori [1992b].  By

way of contrast, the modified model of evolutionary learning presented here allows us to

study more complex games.  Finally, Kandori and Rob [1993] have a model in which

winning pair-wise contests is sufficient for a strategy to be the long-run outcome.

                                                
3 Kirman [1993] also considers a model of random imitation and mutation. Kirman’s model differs from
other evolutionary models discussed here in that intentional behavior plays no role.
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However, in their model winning all pair-wise contests implies 1/2-dominance, which is

not true in our applications.

Our model of imitation has a great deal of similarity to the replicator dynamic in

the sense that strategies that are used are more likely to be imitated than those that are

not. In particular, when there is no noise in the system, all pure strategy profiles are

absorbing, just as they are in the replicator dynamic. For this reason also our results have

even more of the flavor of Evolutionary Stable Strategies than is the case with the usual

stochastic model of mutation. A good resource for results on the replicator dynamics and

Evolutionary Stable Strategies, including the relevant case of cheap talk, is Weibull

[1995].

2. The Model and Basic Characterization of Long Run Outcomes

In this section, we develop the basic characterization of long-run outcomes. The

subsequent section applies this result to the game discussed in the introduction.

We study a normal form game played by M  players. All players have access to

the same set of pure strategies �3  with generic element S . We assume that �3  is finite

and denote a profile of pure strategies by 	 
� M

3T � . We assume that individual players

play pure strategies from �3 . The utility of player I  depends on his strategy IS  and the

profile T  and is written � � 	I IU S T .

The support of the profile T , denoted SUPP� 	T , is the set of all those strategies

which are used by at least one player (and thus excluding those strategies not used by

anyone in the population). We write � 	ST  for the profile in which all players use the

strategy S  and 
T

T  for the profile at time T . Starting with an initial profile 
�

T , the profile

T
T  is determined from 

�T
T
�

 according to the following process of imitation and

innovation.

1) One player I  is chosen at random from the population of M  players. This player only

will be changing his strategy.

2) With probability #F  player I  chooses from 
�

SUPP� 	
T

T
�

 randomly with probabilities

�
� \ 	I

T
P S T

�

. This is called imitation.

3) With probability NF  player I  chooses each strategy from �3  with probabilities

� 	 �Q S � . This is called innovation: strategies are chosen probabilistically regardless

of how widely used they are (if used at all), or how successful they are.
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4) With probability � N# F F� � player I  randomizes with equal probability4 among the

strategies that solve

�
�SUPP� 	

MAX � � 	
T

I

TS
U S

T

T
�

��
.

This is called a relative best response: it is the best response among those strategies

that are actually used by the particular population.

When �# �  our evolutionary model coincides with the model of Vega-Redondo

(1997).  (In that paper the ‘relative best response’ is called ‘imitation’.) Our model is also

closely related to the model of Dutta and Prasad [2004].  The difference is in the

specification of the best response (item (4)). We assume that players choose a relative

best response while their model assumes that players choose an unconstrained best

response.

The process defined above gives rise to a Markov process -  on the state space

	 
� M

3 . Because innovation has strictly positive probability, the process -  is positively

recurrent, and so has a unique invariant distribution FN .  We analyze this process as F

goes to zero. Note that when �F l  both the probability of innovation and the

probability of imitation converge to zero.  However, for �N �  the probability of

innovation converges to zero at a faster rate than the probability of imitation.

We make two assumptions about imitation. First, we assume that N  is larger than

M , the number of players.

Unlikely Innovation: N M� .

The second assumption considers profiles in which players are using different

strategies.  It requires that for any strategy S  in a profile there is a strictly positive chance

of a player who was not playing S  in that profile imitating S .

Connected Imitation If SUPP� 	S T�  and SUPP� 	T  is not a singleton then there is a

player J  such that JS Sv  and � \ 	 �JP S T � .

                                                
4 This assumption is to ensure that in degenerate games in which ties are generic all maximizers have a
chance of being played. With a finite population and generic utility, ties do not occur, and the support will
generally be a singleton.
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Consider a strategy profile T  with the strategy S  and at least one other strategy in

its support.  Connected imitation implies that there is some agent who does not play S

and who has a strictly positive probability of switching to S .  The probability of such a

switch is at least �# F  for some strictly positive constant �# .  Repeated application of the

assumption of connected imitation therefore implies that the probability that all players

who do not play S  switch to S  is at least �� � 	M# F � .  Since N M�  it follows that for

small F  this is much more likely than the event that one single player innovates.

These assumptions are maintained throughout the paper.

We view as plausible the idea that imitation is more likely than innovation. The

specific assumption of unlikely innovation is designed to yield sharp theoretical results,

and not an assumption we would defend on empirical grounds. The assumption of

connected imitation requires comment.  Different players, although having access to the

same set of strategies, have different utility functions, and may feel quite differently

about those strategies. Hence, connected imitation in effect says that these differences are

small enough so that imitation remains plausible. In our application below, the underlying

symmetry of the situation means that a strategy that makes sense for one player makes

sense for someone else. Further note that strategies may condition on a player’s role, for

example, cooperate if player 1; defect if player 2. Hence the same strategy may be

sensible to imitate for players with different roles.

The possibility of imitation and the fact that imitation is much more likely than

innovation distinguishes our model from the model of Kandori, Mailath and Rob [1993],

or Young [1993].  Results similar to the ones obtained by those authors would hold in our

model when �# �  and when the population is large.5

We first establish a basic result about the limit distribution as �F l . Unlikely

innovation implies that heterogeneity is less stable than homogeneity. A heterogeneous

population can evolve into a homogeneous population purely through imitation, while a

homogeneous population cannot evolve at all without at least one innovation.  Theorem 1

confirms this intuition by showing that the limit invariant distribution places weight only

on homogeneous populations.

                                                
5 For a large population the difference between the relative best response analyzed here and a true best
response is typically insignificant since a bounded number of innovations ensures that all strategies are
played. Whenever �

�
SUPP� 	

T
3T

�

�  the relative best response is of course a true best response.
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Theorem 1: The limit 
�

LIM F

F
N N

l

�  exists and � 	 �N T �  implies that � 	ST T�  for

some S 3� .6

Proof of this, and all results, can be found in the Appendix.  We refer to states T  with

� 	 �N T �  as stochastically stable states.  Theorem 1 says that all players use the same

strategy in every stochastically stable state. Hence, our model of imitation leads to

uniformity in the behavior of players.  Although imitation is random, the combination of

random imitation and relative best response ensures uniform behavior in all states that are

stochastically stable.

To get some intuition for Theorem 1 note that by random imitation the Markov

process will occasionally arrive at states where all players choose the same strategy.

Without innovation such states are absorbing because neither imitation nor the relative

best response can introduce a new strategy to the population.  Our assumption “Unlikely

Imitation”  ensures that new strategies are introduced sufficiently infrequently so that

only states where all players choose the same strategy can be stochastically stable.

This greatly simplifies the analysis and is the key to our characterization results below.

3. Pair-wise Contests in Matching Games

We now specialize to consider games with an underlying symmetric structure

induced by matching players. We allow both for global matching procedures, and for

local interaction of the type described by Ellison [1993].

Specifically, we suppose an underlying two person utility function � � 	I JU S S . In

the global matching model, the normal form utility function is

�
� � 	 ��� 	 � � 	

MI I I J

J
U S M U S ST

�

� � .

This is the single population matching model that is common in the literature,7 and like

most of the literature, we simplify by assuming that a player is as likely to be matched

with himself as with another player.8  Notice that all players are a priori identical, so the

                                                
6 A similar result in the context of genetic algorithms may be found in Dawid [1999].
7 See Hahn [1995] for an extension of the standard model to multiple populations. Friedman [1998]
considers a model in which players are sometimes matched with opponents from the same population and
sometimes with opponents from a different population.
8 Our results would also hold if we assumed that players cannot be matched with themselves. In that case,
we would assume an odd number of players.
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assumption of connected imitation makes sense. We refer to this model as the global

matching model.  In the global matching model, we assume that M  is an even number.

We also consider Ellison’s [1993] local interaction model. Here it is assumed that

players are arranged on the circle, so that player �M �  is player 1, and that each player

is matched with K  neighbors on either side. That is,

�

�
� � 	 ��� 	 � � 	 ��� 	 � � 	

I I KI I I J I J

J I K J I
U S K U S S K U S ST

� �

� � � �
� �� � .

In the local interaction model, we generally expect the population to be relatively large

compared to the size of neighborhoods. It simplifies proofs considerably, if make an

explicit assumption to this effect, and hereafter we assume ��� �	M K� � .

Next, we define what it means for one strategy to beat another strategy.  For

� �Bb b , the mixed strategy that plays S  with probability B  and �S  with probability

� B�  is denoted by �� 	 �S SB B� � .

Definition 1: The strategy S  beats the strategy  �S  iff

� � �� 	 �	 � �� �� 	 �	 �U S S S U S S SB B B B� � � � � �

for all ��� �Bb � .

Thus, a strategy S  beats �S  if S  yields higher utility against any combination of S  and �S

that puts more weight on S  than on �S .  Our main characterization result (Theorem 2)

will show that a strategy is the unique stochastically stable state if it beats all other

strategies.

The next definition weakens Definition 1 to allow for ties.

Definition 2: The strategy S  weakly beats �S  iff

� � �� 	 �	 � �� �� 	 �	 �U S S S U S S SB B B B� � � � � �

for all ��� �B� �  and  	 
 	 
� � � �
� � � �� � �� � �U S S S U S S S� � � � . The strategy S  is

tied with �S  iff

� � �� 	 �	 � �� �� 	 �	 �U S S S U S S SB B B B� � � � � �

for all � �Bb b .
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We say that a strategy “beats the field” if it beats every other strategy.

Definition 3: If S beats all �S Sv we say that S beats the field. If for all �S Sv  either S

weakly beats �S  or is tied with �S  we say that S  weakly beats the field.

Theorem 2 shows that a strategy that beats the field is the unique stochastically

stable state. Moreover, if a strategy weakly beats the field then N  must place strictly

positive probability on that strategy.

Theorem 2: In the global matching or local interaction model, if S  beats the field then

� � 		 �SN T � . If S weakly beats the field then � � 		 �SN T � . Moreover, if � � �		 �SN T �

then � � � �
� � � �� � �	 � �� �	U S S S U S S S� � � .

To gain an intuition for Theorem 2, consider a pair of strategies, � �S S .  For small

F  we can give an approximate upper bound for the probability that the Markov process

moves between � 	ST  and � �	ST . Since players choose a relative best response with

probability close to one, exactly one innovation and enough imitations are required so

that the system will move to � �	ST  in the relative best response dynamic. Otherwise, the

Markov process simply returns to � 	ST . Suppose that one innovation and at least R

imitations are required to move from � 	ST  to � �	ST  and suppose that one innovation and

no more than �R R�  imitations are required to move from � �	ST  to � 	ST . Thus, for small

F , the approximate relative likelihood of a transition from � 	ST  to � �	ST  is

	 
RN #F F

Similarly, the approximate relative likelihood of a transition from � �	ST  to � 	ST  is

	 
 �RN #F F

Thus, the ratio of the two probabilities is

	 

	 


	 
 �

�

RN

R R

RN

#
#

#

F F
F

F F
��

Hence, when �R R�  and F  is small, we conclude that a transition from � 	ST  to � �	ST  is

far less likely than a transition from � �	ST  to � 	ST .9

                                                
9 It is known that these types of arguments can not generally be used to prove theorems about the
stochastically stable state.
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The role of the hypothesis that S  beats the field is to insure that �R R�  for all �S .

The reason that this is true is different in the two different global and local matching

cases. In the global matching case, since M  is an even number, from the definition of

beating the field, it follows that ��R Mp , while � �� �R Mb � , from which it is

apparent that �R R� . In the local matching case, suppose the configuration is such that

all players � �� � �, , , K� � �A !  are all playing S . In this case we say that T  has

contiguous S  and refer to the players  � �� � �, , , K� � �A !  as the contiguous set of

S . When S  beats the field and T  has contiguous S  then T  converges to � 	ST  in the

relative best response dynamic. This follows because for players in a contiguous set of S

it is never a relative best response to switch away from S , and for players on the border

of a contiguous set it is always a relative best response to switch to S . Starting from

� �	ST  it is therefore sufficient to have one innovation to S  followed by �K  imitations to

S  to reach � 	ST  and hence � �R Kb .  Starting from � 	ST  we must eliminate all

contiguous sets of S  to move to � �	ST . This requires one innovation to �S  and at least

��� �	 �M K � �  imitations to �S . Therefore, 	 
��� �	 �R M Kp � � . Since we are

assuming that ��� �	M K� � , it follows again that �R R� .

Notice that the amount of time it takes to get from �S  to S  is inversely related to

the probability. In the local interaction case, this is of order �KF� ; in the global case this

is of order � ��	 �MF� � . If the population size is large and F  is small then convergence in

the global case is very slow. By contrast, regardless of the population size, convergence

in the local case will be relatively rapid if the number of opponents interacted with is

small. It is for this reason that Ellison [1993] argues that local interaction is a more

plausible model of the spread of ideas through a population.

The hypothesis, that a strategy ‘beats the field’ relates to the idea of ½-dominance

introduced by Morris, Rob and Shin [1993]. The concept of ½-dominance says that when

half or more of the population is playing S  against any other combination of strategies, it

is a best response to play S . The concept here is weaker in two respects: first, S  must

only beat homogeneous opponents, not arbitrary combinations of strategies. Second, S

must win only in the sense of being a relative best-response, it need not actually be a

best-response; a third strategy may actually do better than S , and this is significant as we

will see in examples below. On the other hand, ½-dominance clearly implies winning all

pair-wise contests. So if there is a ½-dominant strategy, we know from Morris, Rob and
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Shin [1993] that it is stochastically stable with respect to the usual evolutionary dynamic,

and that it is also stochastically stable when innovation is unlikely. It should also be noted

that unlike Morris, Rob and Shin [1993], we consider the local case as well as the global

case.

4. Matching Games with Behavioral Types

In this section we apply the just-obtained characterization results to a pair-wise

matching game. Every period, players are matched into pairs to play a symmetric normal

form game. Prior to choosing an action, each player receives a “signal” containing

information about how his opponent will behave in the game. We examine how the long-

run outcome depends upon the amount of information contained in the signals.

The underlying game played in each match is symmetric. The action space for

both players is !  and the payoff of a player who takes action A  and whose opponent

takes action �A  is � � �	5 A A .

Prior to meeting an opponent, players simultaneously choose a strategy from a

finite set. Strategies serve two roles. First, they influence the information that is generated

about the player and his opponent; and second, they govern behavior as a function of the

generated information.  Formally, let 9  denote a finite set of signals. A strategy for a

player is a map �S 9 !l  and 3  denotes the set of strategies.  If a player chooses

S 3�  and his opponent chooses �S 3�  then the player receives signal Y  with

probability � \ � �	Y S SQ . Signals are private information. In our interpretation, a signal

reflects what the opponent can learn about the player’s behavior prior to the interaction.

We motivate this choice of ‘recognition technology’ as two ways. Strategies

govern the behavior of agents over many matches.  Players are committed to a particular

strategy because it is too costly to change behavior in any particular match.  If a player

could observe the past interactions of an upcoming opponent he, would be able to form a

prediction of how that opponent would behave during their own upcoming match.

Alternatively, it could be assumed that strategies are directly observable. For example, an

individual who rarely lies may blush whenever he is dishonest. Seeing an opponent blush

would indicate that he would be unlikely to be dishonest in future interactions. (This

example is due to Frank (1987)).
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As an example, suppose that [���]9 � . Further assume that � � \ �� 	 �Y S SQ � �

if �S S�  and � � \ �� 	 �Y S SQ � �  if �S Sv . Thus, if two players meet who use the same

strategy then both receive the signal 0 whereas when two players meet who use different

strategies then both receive the signal 1. In other words, players recognize if their

opponents use the same or a different strategy prior to play. This example is important,

because it turns out that strategies that recognize themselves are likely to emerge in the

long-run equilibrium.

It bears emphasis that the space of signals is necessarily smaller than the set of

strategies: the cardinality of the space of strategies is at least 9! , which is greater than

that of 9  provided that there are at least two actions.  This relative coarseness of the

signal space means that it is not possible that a signal could reveal the precise strategy of

an opponent for every possible strategy profile.

If player I  uses strategy IS  and his opponent uses strategy JS  then the expected

payoff of player I  is given by

�

� � 	 � � 	� � �		 � \ � 	 � � \ � 	I J I J I J J I

Y 9 Y 9
U S S 5 S Y S Y Y S S Y S SQ Q

� �
� � � .

 We consider three scenarios. In the first – analyzed in section 4.1 – a player is

able to determine with certainty whether his opponents in each match use the same

strategy he does. For this case, we show for a general class of utility functions that an

efficient equilibrium will emerge as the long run outcome. In the second scenario –

analyzed in section 4.2 – we consider the case of noisy identification of opponents’

behavior for a restricted class of utility functions. In that restricted environment, we relate

the degree of cooperation among agents to the ability of agents to identify types who use

similar rules. The model of section 4.2 supposes a great deal of symmetry in the signaling

mechanism.  The third scenario – analyzed in section 4.3 – replaces the symmetry

assumption with an informational dominance condition.

4.1 Perfect Identification

The first scenario assumes that each player can identify with certainty whether an

opponent is using the same strategy.

Assumption 1: There is a 
�

Y 9� such that 
�

� \ � 	 �Y S SQ �  for every S 3�  and

�
� \ � �	 �Y S SQ �  for �S Sv .
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The signal 
�

Y  is generated if and only if the strategies of the two players coincide and

therefore players can identify those opponents who behave in the same way as they do.

Before analyzing the evolutionarily stable outcomes, it is instructive to consider

the pure strategy Nash equilibria of the static two-player game. In that game, each player

simultaneously chooses a strategy S 3�  and payoffs are given by the payoff function U

defined above.   Let 



A  denote the pure min-max action of the underlying game

 
� � 
 


MAX � �� ��	 MAX � �� 	 � ��
A ! A !

5 A A 5 A A U A !
� �

p w � �

 Let A !�  be any other action that satisfies

 



� � 	5 A A Up

Let 



AA
S  be defined as follows:




�

�


IFÅ
� 	

IFÅAA

A Y Y
S Y

A Y Y

£ �¦¦¦� ¤¦ v¦¦¥

The strategy 



AA
S  plays the action A  if the opponent has chosen 




AA
S  and the minmax

action 



A  if the opponent has chosen a strategy different from 



AA
S .   It is immediate that

the profile 

 


� � 	
A AA A
S S  constitutes a Nash equilibrium for every action A !�  with




� � 	5 A A Up .   Hence, we have the following “folk theorem” for this benchmark game.

Benchmark Theorem: If � � 	V 5 A A�  for some A !�  and 



V Up  then V  is a Nash

equilibrium payoff.

Although the game has many Nash equilibria we will show that under our

evolutionary dynamics the outcome is efficient.  To facilitate the analysis, we make two

assumptions on the utility function  5  of the underlying game.  Assumption 2 requires

that there be a (weakly) Pareto optimal symmetric profile.  Let A  be the best symmetric

outcome, i.e.,

ARGMAX � � 	
A !

A 5 A A
�

�

Assumption 2 says that there is no asymmetric profile that is strictly better than   � � 	A A

for both players.

Assumption 2: � � �	 � � 	 � �� 	 � � 	5 A A 5 A A 5 A A 5 A A� º b
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If there is a public randomization device then Assumption 2 is always satisfied if

we include actions that may depend on the outcome of the public randomization.  In that

case, we can use a coin flip to decide which player is the row player and which player is

the column player.  Once roles are assigned, players choose the Pareto optimal actions.

Assumption 3 requires that there is an action A !�  that ensures that the player

gets a payoff that is at least as large as the payoff of his opponent.

Assumption 3: There is an A !�  such that � � 	 � � 	 �5 A A 5 A A� p  for all A !� .

Note that the payoff difference � �� 	 � � �	5 A A 5 A A�  defines a symmetric zero-sum

game and hence has a (possibly mixed) minmax strategy.  Assumption 3 says that this

minmax strategy is an element of ! , that is, the game defined by the payoff differences

has a pure minmax strategy.  Assumption 3 is always satisfied if we include the possibly

mixed minmax action as one of the elements of ! .

Let 
�
�

AA
S S� . Hence, the strategy 

�
S  is defined as

�

�

�

IFÅ
� 	

IFÅ

A Y Y
S Y

A Y Y

£ �¦¦¦� ¤¦ v¦¦¥

When the opponent plays 
�
S , the strategy 

�
S  takes the Pareto efficient symmetric action.

When the opponent does not play 
�
S  the strategy 

�
S  chooses the punishment action A .

Note that the punishment action maximizes the minimum difference between the player’s

payoff and his opponent’s payoff.  Assumption 2 implies that for every A !�

� � 	 � � 	 �5 A A 5 A A� p  and therefore action A  is indeed a punishment.

Theorem 3 shows that the long run outcome of the evolutionary dynamics will put

positive probability on the strategy 
�
S . Moreover, every other strategy S  that is used with

positive probability leads to a payoff similar to the payoff of 
�
S : when S  meets S  both

players receive the payoff � � 	5 A A ; when S  meets 
�
S  both players receive the same

payoff.

Theorem 3: 
�

� 	 �SN � . If � 	 �SN �  then 
� �

� � 	 � � 	 � � 	U S S U S S 5 A A� �  and

� �
� � 	 � � 	U S S U S S� .

Theorem 3 implies that if A  is the unique symmetric Pareto optimal outcome and

if � � 	 � � 	 �5 A A 5 A A� �  for all A Av  then the optimal punishment strategy is the unique

outcome in the long-run limit.  This will be the case in a generic game that satisfies
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Assumptions 2 and 3.  Otherwise, there may be two or more strategies that are long-run

stable.  Note that if we observe the system for a long time we will typically observe each

player using the same long-run stable strategy and all players receiving the payoff

� � 	5 A A . However, occasionally there will be a transition from one long-run stable

strategy to another. During this brief period of transition, players using different

strategies will punish one another.

The proof of Theorem 3 in the Appendix shows that strategy 
�
S  weakly beats the

field, that is; it weakly beats every other strategy.  Let us briefly explain the role of the

Assumptions in proving this.  Assumption 1 guarantees that players can detect when

opponents use a strategy that differs from their own.  Assumptions 2 and 3 allow us to

construct an optimal punishment strategy that punishes all opponents who use a different

strategy with the same action.  Assumption 3 implies that the action A  maximizes the

payoff difference between a player and his opponent irrespective of the action chosen by

the opponent.  Assumption 2 implies that deviating to an asymmetric profile cannot

increase everybody’s payoff and therefore 
�
S  is a best response to itself. Without

Assumption 3 the optimal punishment could depend on the particular strategy S  used by

other players.  In that case, a long-run stable outcome will depend on the details of the

information environment � � 	9 Q .   If Assumption 2 were violated then there might be an

action A !�  such that � � 	 � � 	5 A A 5 A A� .   In that case, 
�
S  would reward a deviation to

a strategy that always plays A  and – obviously – the result would fail.   Assumption 2

seems natural given that our model considers single population dynamics.  For games in

which all Pareto optimal action profiles are asymmetric it seems more appropriate to

consider an evolutionary model with two distinct populations of players, one

corresponding to row players and the other corresponding to column players.

Note that the strategy 
�
S  need not be ½ dominant.  Suppose that the underlying

game is a Prisoner’s dilemma and let S�  be a constant strategy that always plays “defect”.

Suppose, moreover, that there are signals that enable a strategy S  to play “defect”

against 
�
S  and “cooperate” against S� .  As defined above, 

�
S  plays  “cooperate” against

�
S  and the “defect” otherwise.  Against � �

� ��
S S�  the strategy S�  does better than 

�
S

and therefore 
�
S  is not ½ dominant. Note that the strategy S  seems to serve no useful

purpose except to make S�  look good against 
�
S . Our theory of infrequent innovation

provides a rigorous account of why we should not expect such strategies to play a role in



17

determining the long-run equilibrium: because they do not themselves do well against 
�
S

they will not remain around long enough for players to discover that they should play S� .

4.2 Gift Exchange and Imperfect Identification

The long-run stable strategy identified in the previous section has a simple binary

form.  It uses a single cooperative action when it meets an opponent who uses the same

strategy and it uses a single punishment action for opponents who use a different strategy.

To obtain this simple form, it is necessary that agents be able to identify deviators

(opponents who use a different strategy) without error.

Such a simple strategy is no longer optimal when deviations cannot be detected

without error.  In that case, the punishment or reward must take into account the

likelihood of facing a deviator.  In this section, we analyze the case of imperfect

identification for the special case of an additively separable payoff structure.

We assume that each action A  has a cost � 	C A  and yields a benefit � 	B A  for the

opposing player.  The payoff of a player who takes action A  and whose opponent

chooses action �A  is

� � �	 � �	 � 	5 A A B A C A� �                                                  (1)

We assume that � 	 �C A p , with e� 	 �C A �  for some action eA !� .  Note that the utility

function (1) satisfies Assumptions 2 and 3.  The payoff structure defined in (1) implies

that the effect of a player’s action on the opponent’s payoff is independent of the action

taken by the opponent.  This feature of the payoffs will allow us to determine the long-

run stable outcomes under our evolutionary dynamics; without it, optimal punishments

will generally depend on opponents’ strategies, and we do not get a clear result

We can interpret this game as describing a situation where two players meet and

have an opportunity to exchange goods. The function C  denotes the cost of the good to

the giving player and B  describes the benefit of the good for the receiving player.  Games

with this utility function resemble a prisoner’s dilemma in that the cost minimizing action

is dominant.

Assumption 4 describes the information structure analyzed in this section.

 Assumption 4:
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� 	 IFÅ �
� \ � �	

� 	 IFÅ �

P Y S S
Y S S

Q Y S S
Q

£ �¦¦¦� ¤¦ v¦¦¥

Thus, � 	P Y  describes the probability that a player receives the signal Y  if he and his

opponent use the same strategy whereas � 	Q Y  describes the probability when the two

players use different strategies. Suppose the prior probability that a player uses S  is B

and that he receives the signal Y .  Then, the posterior probability that the opponent will

play according to S  is

� 	
� 	 �� 	 � 	

P Y
P Y Q Y

B
B B� �

.

This posterior is greater than B  when � 	 � 	P Y Q Y�  and less than B  when � 	 � 	Q Y P Y� .

We begin by analyzing the pure strategy Nash equilibria of the static two-player

game.  As in the previous section, each player simultaneously chooses a strategy S 3�  .

Suppose the strategy S   satisfies

� � 		� � � 		 � 		 � � 		 � � 		
9 9

P S Y B S Y C A Q S Y B S Y� p� �                                   (IC)

Inequality (IC) says that a player who plays S  receives a higher payoff than a player who

always plays the cost minimizing action eA . (Recall that e� 	 �C A � ).  Since the

information system sends the same signals for every deviation from S , a player who

wishes to deviate will always do best by deviating to the cost minimizing strategy.

Consequently, the inequality (IC) is necessary and sufficient for S 3�  to constitute a

pure strategy Nash equilibrium.

Benchmark Theorem: The strategy S 3�  is a pure strategy Nash equilibrium if and

only if it satisfies (IC).

The strategy that chooses the cost minimizing action for every signal is always a

Nash equilibrium.  If the signal is uninformative ( P Q� ) then this will be the only

equilibrium.  If the signal is informative and the benefits of exchange are sufficiently

great then there will be Nash equilibria in which gift exchange takes place.

Next, we characterize the long-run stable outcome implied by our evolutionary

model. The strategy 
�
S  is defined as follows.  For every signal Y  the action 

�
� 	S Y  solves

                        MAX ; � 	 � 	= � 	 ; � 	 � 	= � 	
A !

P Y Q Y B A P Y Q Y C A
�

� � �                                 (*)
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We assume that the maximization problem (*) has a unique solution for every Y .  The

strategy 
�
S  rewards opponent types when � 	 � 	P Y Q Y�  and punishes opponent types

when � 	 � 	Q Y P Y� .  In the limiting case where the type allows no inference about his

play ( � 	 � 	P Y Q Y� ) the strategy 
�
S  minimizes the cost C .

Theorem 4, proven in the Appendix, shows that 
�
S  is the unique long-run

outcome.

Theorem 4: 
�

� 	 �SN � .

To prove Theorem 4 we show that 
�
S  weakly beats the field and that

� � � �
� � � �

� � �
� � 	 � � 	U S S S U S S S� � �  implies 

�
S S� .  Therefore, we can apply Theorem 2

to get the desired conclusion.  Theorem 4 uses the special structure of the gift-exchange

game to find an optimal punishment strategy that “works” irrespective of the behavior of

the opponent.   In particular, the simple characterization of the long-run outcome depends

on the fact that the impact of a player’s action on his opponent’s payoff is independent of

the opponent’s action.  The separability of payoffs assumed in this section plays a role

similar to the role played by Assumption 3 in the previous section.  Without the separable

payoffs, the optimal punishments and rewards could depend on the strategy of the

opponent. In that case, there may be no strategy that weakly beats the field and hence our

characterization theorem could not be applied.

Under our interpretation of the environment as gift exchange game, the gift is

decreasing as the signal indicates an opponent who is more likely to play a different

strategy.  It is worth emphasizing that in a long-run stable outcome typically all players

are choosing the same strategy. Hence, the probability that a player is using 
�
S  is one,

irrespective of the realization of the signal.  Nevertheless, players will punish each other

for appearing to be different. This implies that the equilibrium is inefficient.  In contrast

to the case of Theorem 3, where a socially efficient payoff was realized in the long-run

stable outcome, here inefficiencies persist in the long-run because players respond to

signals as if one-half of the population were using a different strategy and hence needed

to be punished.

4.3 Informational Dominance

In Theorem 4 every strategy generates the same information.  We now relax that

assumption and consider strategies that may differ in their ability to identify the behavior
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of opponents.  For example, a strategy may have an advantage in determining whether an

opponent uses the same strategy.  Alternatively, a strategy may be good at masquerading

and hence be hard to distinguish from other strategies.

Specifically, consider the optimal punishment strategy 
�
S  defined above. This

strategy uses a symmetric information structure defined by � � 	P Q  and therefore generates

the same information for every opponent who does not use 
�
S . We continue to suppose

that 
�
S  uses this information structure, that is

�

�

�

� 	 IFÅ
� \ � 	

� 	 IFÅ

P Y S S
Y S S

Q Y S S
Q

£ �¦¦¦� ¤¦ v¦¦¥

However, for strategies other than 
�
S  we now drop Assumption 4 and allow general

signal distributions � \ � 	SQ ¸ ¸ .  Nevertheless, we show that if 
�
S  is informationally

dominant, it emerges as a long run outcome.

Consider a situation where only strategies 
�
S  and S  are played. Strategy 

�
S  is

informationally superior to strategy S  if the signal generated by 
�
S  provides better

information about the opponent’s strategy than the signal generated by S .  The signal

generated by 
�
S  provides better information (in the sense of Blackwell (1954)) than the

signal generated by S  if there is a non-negative matrix

	 

�

YZ Y 9 Z 9
M

� �

such that

�

��

� \ � 	 � 	�

� \ � 	 � 	�

YZ

Y 9

YZ

Z 9

YZ

Z 9

Z

Y S S P Z

Y S S Q Z

M

Q M

Q M

�

�

�

� �

�

�

�

�

�

In other words, the signals generated by � \ � 	SQ ¸ ¸  are a garbling of the signals generated

by 
�
S .

The strategy 
�
S  is informationally dominant, if it is informationally superior to

every other strategy S .  Note that informational dominance only requires that strategy 
�
S

generates better information in situations where 
�
S  and one other competing strategy are
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played.  Thus, 
�
S  may be an informationally dominant strategy even though strategy S

does better at identifying a third strategy S .

A trivial example of an informationally dominant strategy is a strategy that cannot

be distinguished from any other strategy.  In that case, 
�

� \ � 	 � \ � 	Y S S Y S SQ Q�  for all S

and hence strategy 
�
S  is informationally dominant even if strategy 

�
S  does not generate

any information, that is, � 	 � 	P Y Q Y�  for all Y .  This is a case where strategy 
�
S  is

informationally dominant because it successfully masquerades as other strategies.

Theorem 5 shows that when strategy 
�
S  is informationally dominant, it emerges

as an outcome of the long-run stable distribution. Moreover, every strategy that is a long-

run stable outcome is similar to strategy 
�
S  in payoff. In particular, if � 	 �SN �  then the

payoff when S  meets S  is the same as the payoff when 
�
S  meets 

�
S .  

Theorem 5: If 
�
S  is informationally dominant then 

�
� 	 �SN � . Moreover, for every

strategy S  with � 	 �SN �  we have that 
� �

� � 	 � � 	U S S U S S�  and that 
� �

� � 	 � � 	U S S U S S� .

In this section, we have restricted the informationally dominant strategy to

generate symmetric information, that is, to generate the same information for every

opponent.  This allowed us to identify a behavior (a map from signals to actions) that is

successful against every opponent. The symmetry assumption in this section is therefore

more than a convenience. It implies that strategy 
�
S  is informationally superior to every

other strategy with a uniform interpretation of the signals.  If we were to forego this

symmetry assumption we would need to replace it with a requirement that would

preserve this uniformity. For example, we could assume that there is a reference strategy

S  such that any signal realization generated by 
�
S  against an arbitrary opponent is at least

as informative as it is against strategy S .  Informational dominance would then require

that the signal generated against S  be informationally superior to the signal generated by

any opponent.

4.4 Examples

We conclude this section by illustrating Theorems 4 and 5 in the following four

examples.

Example 1: First, consider the case where every strategy uses the same symmetric

information structure � � 	P Q  and hence Theorem 4 applies.  Moreover, there is a signal 
�

Y
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with the property that 
� �

� 	 �� � 	 �P Y Q Y� � , that is, players can perfectly identify if their

opponents use the same strategy. In such a case Theorem 4 is of course a special case of

Theorem 3.  If a player uses strategy 
�
S  and meets a player who also uses 

�
S , then both

players are assigned the type 
�

Y .  Since 
� �

� 	 �� � 	 �P Y Q Y� � , the action taken by both

players solves

MAX � 	 � 	
A !

B A C A
�

�

Note that � 	 � 	B A C A�  is the social benefit of action A  and hence we have an efficient

outcome in this case.  If a player uses a strategy other than 
�
S  then his opponent receives

the signal 
�

Y Yv .  Hence � 	 �P Y � , and so 
�
S  punishes the player by choosing the

action that solves

MAX � 	 � 	 MIN � 	 � 	
A ! A !

B A C A B A C A
� �
� � �� �

Note that this action maximizes the payoff difference between the two players, as

required by Theorem 3.   Since the punishment action minimizes the sum of a player’s

cost and his opponent’s benefit, that player is willing to incur such a cost since it leads to

a negative payoff for his non-
�
S  playing opponent.

Example 2.  To the environment of Example 1, we add the strategy S , which can

successfully masquerade as any other strategy.  Thus, a player using strategy S  cannot

distinguish between opponents who use S  or S , so that � \ � 	 � \ � 	Y S S Y S SQ Q�  for all

signals �Y 9�  In addition, players who use S  do not receive informative signals about

their opponents.  Hence, we can describe their information by a symmetric information

structure � � 	P Q  with � 	 � 	P Y Q Y� .  The strategy S  is informationally dominant and

hence we can apply Theorem 5.  Since signals are not informative it follows that S  is a

long-run stable outcome if it takes the least cost action eA  for every signal realization.  In

that case, Theorem 5 implies that every strategy that is a long-run stable outcome must

play the least cost action. Hence, the introduction of a strategy that successfully

masquerades as other strategies eliminates cooperation between players.

Example 3. This example serves to emphasize that 
�
S  need not be ½ dominant in the

ordinary sense. Consider the environment of Theorem 5 and assume that 
�
S , the
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informationally dominant long-run strategy, is not constant.  Let S�  be a constant strategy

that always plays eA . Suppose also that there are signals that enable a strategy S  to

identify S�  with certainty and to choose an action that maximizes B . Otherwise, S

chooses eA .  For an appropriate choice of B , the strategy S�  does better than 
�
S  against

� �
� ��
S S�  and therefore 

�
S  is not ½ dominant.

Example 4: Consider a symmetric two-signal scenario, [���]9 �  and

��	 ��	 � ���P Q P P� � p .  If the signal is �Y �  then this is an indication that the two

players are using the same strategy whereas if the signal is �Y �  it is an indication that

the strategies are different. Suppose there are three actions [ �����]A � � ,
�� 	 � � 	 �B A A C A A AC� � � . This is a trading game with a cooperative action (�A � ), a

no-trade action ( �A � ), and a hostile action ( �A �� ). Both the hostile and the

cooperative action are costly for players, whereas the no-trade action is costless.   In this

example, we can apply Theorem 4 and distinguish the following cases. When

�
� �P

C�
�

,

then in the unique long-run outcome all players take the no-trade action.  When

�
� �P

C �
�

,

then in the unique long-run outcome players choose the cooperative action when the

signal is  �  and the hostile action when the signal is � . And finally when

� �
� � � �P P

C� �
� �

 ,

then in the unique long-run outcome players take the no trade action when the signal is  0

and the hostile action when the signal is 1. In this case, the long run outcome is therefore

worse than the unique equilibrium of the normal form game. Players choose no trade and

hostility and do not realize any of the gains from trade.

This example points out a significant non-monotonicity. Suppose that � �C� � .

Then when �P �  we are in the second, cooperative, case. When P  approaches ½ we are

in the first no trade case. But for intermediate values of P , for example ���P � , we are
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in the final case where efficiency is actually less than the autarkic solution that occurs

when P  approaches ½.

5. The Masquerade

A standard and fundamental question about systems in which strategies are

directly observable is why evolution does not favor free-riding strategies that pretend to

be something they are not. In particular, our results imply that a free-riding strategy that

can perfectly mimic other strategies must be the long-term winner. If free-riding is not to

emerge in the very long-run then it must in some respect be costly.

A good general discussion of the issue of free-riding and selfishness can be found

in Bergstrom [2002]. To ask why we do not see only free-riding masqueraders we return

to the standard environment of perfect identification and focus on the special case of gift

exchange games. In this environment, we have shown that the unique stochastically

stable outcome is the optimal punishment strategy that is altruistic towards itself and

spiteful towards other strategies. Implicitly, we have assumed that such a masquerade is

infinitely costly to implement. However, if there were a strategy that sent exactly the

same signal as the optimal punishment strategy, but behaved selfishly in each match, then

it would be the strategy to emerge as the long-term winner rather than the optimal

punishment strategy.

The most interesting case to consider is the intermediate one in which a

masquerade is neither costless nor infinitely costly. Recall the assumption of perfect

identification: a signal 
�

Y  such that 
�

� \ � 	 �Y S SQ �  and 
�

� \ � �	 �Y S SQ �  for �S Sv . The

strategy 
�
S  is called the optimal punishment strategy. Let the action

ARGMAX � � 	M

A
A 5 A A�  be the best response to altruism. Let us add to this environment

a single free-riding strategy MS  with the property that � 	M MS Y A�  and 
�

� \ � 	 �MY S SQ �

for all S 3� . The free-riding strategy perfectly mimics ever other strategy and exploits

the optimal punishment strategy to the maximum extent possible. Utility to the strategy
MS  is given by � � �	5 A A Y� , where �Y �  is the cost of masquerading. Then the optimal

punishment strategy will continue to beat the field provided it can beat the free-riding

strategy. 

Theorem 6: If MAX[ � � 	 � � 	� � � 	 � � 	]M M M M5 A A 5 A A 5 A A 5 A A Y� � b  then 
�
S  beats the

field.
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Proof: The optimal punishment strategy earns

� �
� � �� 	 	 � � 	 �� 	 � � 	M MU S S S 5 A A 5 A AB B B B� � � � �

while the free-riding strategy gets

�
� � �� 	 	 � � 	 �� 	 � � 	M M M M MU S S S 5 A A 5 A AB B B B Y� � � � � � ,

from which the results follows directly.

;

The implication of this seems clear enough: we would not expect strategies to

evolve that tell “small lies,” that is costly lies with little benefit. However, we might

expect that highly evolved strategies will tell low cost lies that have a large benefit. No

one expects a defendant in a murder trial to admit that he committed the murder.

Witnesses with less at stake are viewed as more likely to tell the truth.

A particularly significant aspect of this theory is what it implies for games where

cooperation is enforced by punishments off the equilibrium path. Consider for example, a

simple noisy prisoner’s dilemma game followed by a “punishment round.” In this game,

there is a gift that costs one to give. The gift is worth '  and if it is given it is received

with probability � P� . In the second round, each player may optionally impose a penalty

of 0  on the other player at a cost of # . Assume that �0 �  and

�� 	 � 	 �P ' P # 0� p � � . Then, the optimal punishment strategy is to give the gift and

punish if a gift is not received in turn.  The best-response to the optimal punishment

strategy is not to punish, and

� � 	 � � 	 � � 	 � � 	M M M M5 A A 5 A A 5 A A 5 A A P#� � � � .

If the signal is not very noisy, then P# Y�  and it would not be worth employing the

free riding strategy.

Appendix

Below we interpret N  as the measure describing the limit of the invariant

distributions of the perturbed ( �F � ) Markov process.

Let �N  be an irreducible invariant measure of the Markov process in which

�F � . Let X  be the set of profiles in the state space 	 
� M

3  that this invariant

distribution gives positive weight to. We call such an X  an ergodic set. Let 8  be the set
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of all such X .   Note that this is a set of sets. Let SUPP� 	T  denote the set of pure

strategies in the support of T . First we establish some basic facts about 8 .

Lemma A1: (1) � � �X X X X� 8 º � � � ; (2) If � �T T X� � 8  then

SUPP� 	 SUPP� �	T T� ; (3) [ � 	]ST � 8  for all �S 3� .

Proof:  When �F �  we have the relative best-response dynamic in which one player

switches with equal probability to one of the relative best-responses to the current state.

The sets X  are by definition minimal invariant sets under the relative best-response

dynamic. That these sets are disjoint is immediate from the definition. Pure profiles are

absorbing since no strategy can be used unless it is already in use. This means that every

set X  consisting of a singleton pure profile is in 8 . To see that SUPP� 	 SUPP� �	T T� ,

observe that the relative best-response dynamic cannot ever increase the set of strategies

in use. If there is a point SUPP� 	� SUPP� �	S ST T� �  then the probability that the relative

best-response dynamic goes from T  to �T  is zero, which is inconsistent with the two

strategies lying in the same ergodic set.

;

Lemma A1 (2) implies that for each X � 8  we may assign a unique set of pure

strategies � 	3 X  corresponding to SUPP� 	�T T X� .

To prove our results, we will use the characterization of N  given by Young

[1993].10 Let U  be a tree whose nodes are the set 8 . We denote by � 	U X  the unique

predecessor of X . An X -tree is a tree whose root is X . For any two points �X X � 8�

we define the resistance � � 	R X X�  as follows. First, a path from X  to X�  is a sequence of

points 
�

� � � 	
+

T T! with 
�

T X� , 
+

T X� �  and 
�K

T
�

 reachable from 
K

T  by a single

player changing strategy. If the change from 
K

T  to 
�K

T
�

 is a relative best-response, the

resistance of 
K

T  is 0; if the change is an imitation the resistance is 1; if the change is an

innovation the resistance is N . The resistance of a path is the sum of the resistance of

each point in the sequence. The resistance � � 	R X X�  is the least resistance of any path from

X  to X� . The resistance � 	R U  of the X -tree U  is the sum over non-root nodes of

� � � 		R X U X� � . The resistance of X , � 	R X  is the least resistance of any X -tree. The

following Theorem is proved in Young [1993].

                                                
10 Although the standard convention in game theory is that a tree begins at the root, Young [1993] followed
the mathematical convention that it ends there. We have used the usual game-theoretic convention, so our
trees go in the opposite direction of Young’s.
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Young’s Theorem: LIM FN N�  exists and � 	 �N X �  if and only if

� 	 MIN � 	R R
X

X X
�8

�
�

�

Remark: The set of X  for which � 	 �N X �  is called the stochastically stable set.

The basic tool for analyzing N  is tree surgery, by which we transform one tree

into another and compare the resistances of the two trees. Suppose that U  is an X -tree.

For any nodes X Xv�  we cut the X� -subtree separating the original tree into two trees;

one of which is the X� -subtree and the other that which is left over. This reduces the

resistance by � � � 		R X U X� � . If X�  is a node in either of the two trees, and eX  is the root of

the other tree, we may paste eX  to X�  by defining �e	U X X� � . This tree has the root of

the tree containing X� . The paste operation increases the resistance by �e� 	R X X� , so the

new tree has resistance � 	 �e� 	 � � � 		R R RU X X X U X� �� � � . These operations can be used to

characterize classes of least resistance trees, by showing that certain operations do not

increase resistance. They can also be used (as below) in proofs by contradiction, showing

that certain trees cannot be least-resistance because it is possible to cut and paste in such

a way as to reduce resistance.

Theorem 1:  LIM FN N� exists and � 	 �N X �  implies that [ � 	]SX T�  for some �S 3� .

Proof: Existence of N  follows from Young’s theorem. Suppose that � 	 �N X �  and that

X  is not a singleton pure profile. Let U  be a least resistance X -tree. Let [ � 	]SX T��  be

a singleton pure strategy that is in some T X� , that is, � 	S 3 X� . Cut X�  and paste the

root X to it. Since X�  is a singleton pure profile, it requires at least one innovation to go

anywhere, so that cutting it reduces resistance by at least N . On the other hand, since

T X�  and � 	S 3 X� , we can go from X  to X�  by no more than M  imitations, so that

pasting the root to X�  increases resistance by at most M . By the assumption of unlikely

innovation (that is, N M� ), this implies that the new tree has strictly less resistance than

the old tree, thus contradicting Young’s Theorem.

;

In what follows we simplify notation by writing 	N T	  instead of �[ ]	N T .

Theorem 2:  In the global matching or local interaction model, if S  beats the field then

� � 		 �SN T � . If S weakly beats the field then � � 		 �SN T � . Moreover, if � � �		 �SN T �

then � � � �
� � � �� � �	 � �� �	U S S S U S S S� � � . .
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Proof: The proof is in two parts, concerning first the strict case and then the week case.

1. Strict Case: Suppose that there is some X  with � 	 �N X � . By Theorem 1,

[ � �	]SX T�  for some pure strategy �S . Let U  be the least resistance of the X -tree. If

[ � 	]ST  is not the root, we may suppose that it is attached to some X� , and consider

cutting it and pasting the root to it. We now have two different arguments depending on

whether matching is global or local.

Global Case: Considering first a transition from � 	ST  to � �	ST , it takes at least

one innovation combined with (since S  beats any point in X� ) ��M  imitations to arrive

at X� . So this reduces resistance by at least ��N M� . Considering next the reverse

transition from � �	ST  to � 	ST , since S  beats �S  such a transition can be accomplished

with one innovation and no more than � �	��M �  imitations.  So resistance is strictly

reduced under this combined operation thus leading to a contradiction of Young’s

Theorem.

Local Case: As in the intuitive discussion in the text, when the configuration is

such that all players � �� � �, , , K� � �A !  are all playing S  we say that the state has

contiguous S .  We reiterate the observation that when S  beats the field, a state with

contiguous S  is in the basin of � 	ST : the players in a contiguous set of S  never find it a

relative best response to switch from S , and players on the border of a contiguous set

always find it a relative best response to switch to S .  Starting from � 	ST  we must

eliminate all contiguous sets of S  in order to be able to exit the basin of � 	ST . This

requires at least ��� �	M K �  players switching to a different strategy. So cutting [ � 	]ST

from X�  reduces resistance by at least 	 
��� �	 �M K � � . On the other hand, starting

from � �	ST , it is sufficient (following an innovation into S ) for �K  players to switch to S

in order to be able to establish a contiguous set and hence a basin of � 	ST . In this case

resistance will have been increased by at most �K . Given the assumption made in the

main body of the article that ��� �	M K� � , it follows that resistance has been strictly

reduced by this combined operation, thus leading to the contradiction of Young’s

Theorem.

2. Weak Case: In this case we can only conclude (for both global and local interaction)

that resistance is not increased after our tree-cutting operation. This conclusion then
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implies that [ � 	]ST  must be at the root of a least-cost tree, giving us � � 		 �SN T �  as

required.

If we have � � �		 �SN T �  and � � � �
� � � �� � �	 � �� �	 �U S S S U S S S� � � v  (note the

inequality here) then, since S  weakly beats the field by assumption, it follows that S

beats �S . From this we can conclude that [ � �	]ST  cannot be the root of a least cost tree,

and so it must be that � � �		 �SN T � , thus proving the last statement in the theorem.

;

Theorem 3: (1) 
�

� � 		 �SN T � . (2) If � � 		 �SN T �  then 
� �

� � 	� � 		 � � 	5 S Y S Y 5 A A�  and

� � 	� 	 � � � 		5 S Y A 5 A S Y�  for all Y  such that 
�

� \ � 	 �Y S SQ � .

Proof: We first show that 
�
S  weakly beats the field.  Suppose that 

�
S Sv . Let

�
� �� 	S S S

B
B B� � � , then

	 


� � �

�

� � 	 � � 	 � � 	 �� 	 � � 	� � 		

�� 	 � � � 		 � � 	� 	 � � 	
Y 9

U S S U S S 5 A A 5 S Y S Y

5 A S Y 5 S Y A Y S S

B B
B B

B B Q
�

� p � �

� � ��

Since this expression is linear in B , to show that S  weakly beats the field, it suffices to

show that it is non-negative both for �
�B �  and �B � . When �

�B �  we have

< >

< >

�
�� � �

�
� �

� � 	 � � 	 � � 	 � �� 	� �� 		

MIN � � �	 � �� 	
A !

U S S U S S 5 A A 5 S Y S Y

5 A A 5 A A

B B

�

� p �

� �

The first term is non-negative by the definition of A ; the second term is non-negative by

Assumption 3.  For �B � , we have

� �
� � 	 � � 	 � � 	 MAX � �� 	

A !
U S S U S S 5 A A 5 A A

B B �
� p �

Assumption 3 implies � � �	 � �� 	5 A A 5 A Ap  for all �A !�  and Assumption 2 implies

� � 	 MIN[ � � �	� � �� 	]5 A A 5 A A 5 A Ap .  Hence, it follows that � � 	 � �� 	 �5 A A 5 A A� p  for all

�A !�  which shows that 
�
S  weakly beats the field.  Theorem 2 therefore implies that

�
� � 		 �SN T �  and that if � � 		 �SN T �  then

< >

� �
� �

�

� �
� � �

� � � 	 � � 	

� � 	 � � 	 [ � � � 		 � � 	� 	] � � 	
Y 9

U S S U S S

5 A A 5 A A 5 A S Y 5 S Y A Y S SQ
�

� �

p � � ��
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From the definitions of A  and A  as well as from the expression above, we see that this is

possible only if � � 	 � � 	5 A A 5 A A�  and � � 	� 	 � � � 		5 S Y A 5 A S Y�  for all T  with

�
� � 	 �Y S SQ � .

;

Theorem 4: 
�

� 	 �SN � .

Proof:  Theorem 4 follows from Theorem 5 (proved below) since the action that defines

�
� 	S Y  is unique.  In particular, Theorem 5 implies that � � 		 �SN T �  if and only if

�
� 	 � 	S Y S Y�  for all Y 9�  and therefore � � 		 �SN T �  implies 

�
S S�

;

Theorem 5: If 
�
S  is informationally dominant then,

�
� � 		 �SN T � . Moreover, for every

strategy � 	ST  with � � 		 �SN T �  we have 
� �

� � 	 � � 	U S S U S S�  and 
� �

� � 	 � � 	U S S U S S� .

Proof:  We first show that 
�
S  weakly beats the field. Let 

�
�� 	S S S

B
B B� � �  for some

S 3� . We must show that 
�

� � 	 � � 	 �U S S U S S
B B

� p  for �
�; ��	B � . Since

�
� � 	 � � 	U S S U S S

B B
�  is linear in B  it suffices to show that it is non-negative at both

�
�B �  and �B � .

< > < >

< > < >

< >

< >	 


� �
� �

�

� �

� �

� �

� � 	 � � 	

�
[ � 	 � 	 � � 		 � 	 � 	 � � 		

�
� \ � 	 � \ � 	 � � 		 � \ � 	 � \ � 	 � � 		]

�
[ � 	 � 	 � � 		 � � 	 � 		 � � 		

�
� 	 � 	 � � 		 � � 	 � 		 � � 		

Y 9

Y 9

ZY

Z

U S S U S S

P Y Q Y B S Y P Y Q Y C S Y

Y S S Y S S B S Y Y S S Y S S C S Y

P Y Q Y B S Y P Y Q Y C S Y

P Y Q Y B S Z P Y Q Y C S Z

Q Q Q Q

M

�

�

�

�

� � � �

� � � �

� � � �

� � � �

�

�
]

�
9

p

�

where the last inequality follows since 
�
� 	S Y  maximizes

< > < >� 	 � 	 � 	 � 	 � 	 � 	P Y Q Y B A P Y Q Y C A� � �

and �ZY

Z 9

M
�

�� .

Next we consider the case �B � . Let �� 	 � \ � �	Q Y Y S SQ� . We may write the

utility difference as
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� � �

� � �

� �

� � 	 � � 	

[� � 	 � � 		 � � 		 � 	 � � 		 � � 		 ]

[� � 	 � 		 � � 		 � 	 � � 		]

Y 9

Y 9

U S S U S S

P Y B S Y C S Y Q Y B S Y C S Y

P Y Q Y B S Y P Y C S Y

�

�

� �

� � � p

� �

�
�

where the inequality follows from � 	 �C A p .  Recall that there is an action eA  with

e� 	 �C A �  and therefore, by the definition of 
�
S

	 
 	 
 	 


	 

� � � �

� 	 � 	 � � 		 � 	 � � 		 � 	 � 	 � � 		 � 	 � 	 � � 		

e� 	 � 	 � 	

P Y Q Y B S Y P Y C S Y P Y Q Y B S Y P Y Q Y C S Y

P Y Q Y B A

� � p � � �

p �

Hence,

	 

� � �

e� � 	 � � 	 � 	 � 	 � 	 �
Y 9

U S S U S S P Y Q Y B A
�

� p � ��

where the last equality follows from � 	 � 	 �P Y Q Y� �� � .  This shows that 
�
S  weakly

beats the field.

 When � � 		 �SN T �  then it follows that

< >

< >	 


� �
� �

�

� �

� � 	 � � 	

�
[ � 	 � 	 � � 		 � � 	 � 		 � � 		

�
� 	 � 	 � � 		 � � 	 � 		 � � 		 ] �

Y 9

ZY

Z 9

U S S U S S

P Y Q Y B S Y P Y Q Y C S Y

P Y Q Y B S Z P Y Q Y C S ZM

�

�

� �

� � �

� � � � �

�
�

Since 
�
� 	S Y  is the unique optimal action it follows that for �

ZY
M � , 

�
� 	 � 	S Z S Y�  and

hence

	 


	 

� �

� �

� � 	 � 	 � � 		 � 	 � � 		

� 	 � � 		 � 	 � � 		

� � 	

ZY

Y 9 Z 9

Y 9

U S S P Y B S Z P Y C S Z

P Y B S Y P Y C S Y

U S S

M
� �

�

� �

� �

�

��

�

An analogous argument shows that 
� �

� � 	 � � 	U S S U S S� .

;
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