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THE FOLK THEOREM WITH IMPERFECT
PUBLIC INFORMATION'

By Drew FUDENBERG, DaviDb LEVINE, AND ErIC MASKIN

We study repeated games in which players observe a public outcome that imperfectly
signals the actions played. We provide conditions guaranteeing that any feasible, individu-
ally rational payoff vector of the stage game can arise as a perfect equilibrium of the
repeated game with sufficiently little discounting. The central condition requires that
there exist action profiles with the property that, for any two players, no two
deviations—one by each player—give rise to the same probability distribution over public
outcomes. The results apply to principal-agent, partnership, oligopoly, and mechanism-
design models, and to one-shot games with transferable utilities.

Keyworps: Repeated games, Folk Theorem, imperfect observability, moral hazard,
mechanism design.

1. INTRODUCTION

THE HALLMARK OF REPEATED GAMES is the enormous variety of behavior that is
consistent with equilibrium. Indeed, the Folk Theorem establishes that any
feasible payoff vector Pareto-dominating the minimax point of the stage game
can arise in a subgame-perfect equilibrium of the infinitely repeated game for
discount factors sufficiently near one.?

An important hypothesis of the standard Folk Theorem is that the players can
observe one another’s actions in each repetition, so that deviations from
equilibrium strategies are detectable. In contrast, this paper considers games in
which players observe only a public outcome that is a stochastic function of the
actions played. Thus these are games of moral hazard. The major task of the
paper is to provide conditions sufficient for the Folk Theorem to extend to such
games. The most important hypotheses concern the way the probability distribu-
tion over public outcomes depends on the players’ actions. These hypotheses
also enable us to draw conclusions about one-shot games in which utility
transfers are available.

A vector of actions (an action profile) satisfies pairwise identifiability if, for
every pair of players, the distributions over public outcomes induced by one

! This paper subsumes two earlier manuscripts, “Discounted Repeated Games with One-Sided
Moral Hazard” and “The Folk Theorem with Unobservable Actions.” We would like to thank
Svend Albaek, Andrew Atkeson, Patrick Kehoe, Andreu Mas-Colell, Abraham Neyman, and Neil
Wallace for helpful comments. Martin Hellwig, David Kreps, and two referees offered valuable
suggestions, particularly for improving the exposition. Steven Tadelis provided fine research assis-
tance. NSF Grants 87-08616, 86-09697, 85-20952, 89-111121, and a grant from the UCLA Academic
Senate provided research support.

Throughout this paper we shall confine attention to versions of the Folk Theorem in which
subgame-perfect equilibrium or one of its refinements is the solution concept (see, however, the
remarks in Section 10). For more than two players, such versions require that the set of feasible
payoffs satisfy a nonempty interior condition (see Fudenberg and Maskin (1986a) and Abreu, Dutta,
and Smith (1994)).
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player’s unilateral deviations (pure or mixed) from this vector are distinct from
those induced by the other’s deviations (Definition 5.5), so that the two players’
deviations can be distinguished statistically. If this condition holds for all
pure-action profiles (profiles in which players do not randomize), a “Nash-
threat” version of the Folk Theorem obtains: any payoff vector Pareto-dominat-
ing a Nash equilibrium of the stage game can be sustained in an equilibrium of
the repeated game for discount factors near enough to 1 (Theorem 6.1).

In many games of interest, however, the hypothesis that all pure-action
profiles are pairwise identifiable fails. For such games, we strengthen pairwise
identifiability to require, in addition, that any two deviations by the same player
induce different distributions (individual full rank; see Definition 5.1). If a game
has at least one (mixed-action) profile satisfying the conjunction of pairwise
identifiability and individual full rank—i.c., pairwise full rank (Definition
5.4)—then again the Nash-threat Folk Theorem applies. Generic games possess
such a profile provided that the number of possible public outcomes is no less
than the total number of elements in the action sets of any two players.

To obtain the conventional “minimax-threat” Folk Theorem (Theorem 6.2)
requires more stringent conditions. Specifically, besides the hypotheses for the
Nash-threat theorem, it suffices to assume that all pure-action profiles satisfy
individual full rank.

One-shot games in which transfers of utility can be made contingent on the
outcome are conceptually and technically much like repeated games. We derive
a one-shot counterpart to the Nash-threat Folk Theorem in Section 6 (Theorem
6.3).

These results apply to several models of economic interest. In particular, we
show in Section 6 that the minimax-threat theorem applies to partnership games
(in which each player supplies an unobservable input to a production process
and output depends stochastically on the inputs) and to Cournot oligopoly (in
which firms sell output unobservably and the market price is a random function
of total supply). We argue, furthermore, that the Nash-threat result applies to
games with a product structure. These are games in which a public outcome is a
vector with a different component for each player, and such that a player’s
action affects only his own component (Definition 7.1). Principal-agent models
(Section 9) and games of pure adverse selection (Section 8) are prominent
examples of games with a product structure.

Our paper contributes to a considerable literature on repeated games with
unobservable actions. Rubinstein (1979), Radner (1981, 1985), and Rubinstein
and Yaari (1983) showed that efficient payoffs can be attained or approximated
by equilibria of repeated principal-agent games.> The application of our Nash-
threat proposition generalizes these results. For games in which no player’s
action is observable, the previous literature drew conflicting conclusions. On the

3 These are games in which only one player’s actions are unobservable, i.e., in which one-sided
moral hazard obtains.



FOLK THEOREM 999

one hand, Radner (1986) (in partnership games) and Lehrer (1989) (more
generally) showed that efficient equilibria exist if players do not discount at all.
On the other hand, Radner, Myerson, and Maskin (1986) argued by example
that, with discounting, the set of equilibrium payoffs may be bounded away from
the Pareto frontier even as the discount factor tends to 1. Moreover, the
equilibria analyzed by Green and Porter (1984) and Abreu, Pearce, and
Stacchetti (1986) in the repeated Cournot oligopoly game described above,
exhibit the same sort of inefficiency. Our work makes clear that the Radner-
Myerson-Maskin counterexample relies on there being relatively few possible
public outcomes compared to the number of possible actions, so that the
genericity result mentioned before does not apply (see Sections 3 and 6), and
that equilibria of the Green-Porter and Abreu-Pearce-Stacchetti variety are
necessarily inefficient only because they are symmetric: if (even slightly) asym-
metric equilibria are admitted, the Folk Theorem is restored (Section 6).

Finally, Green (1987) examined a model of repeated insurance contracts
against idiosyncratic shocks that are unobservable to insurers. We explain in
Section 2 how we can reinterpret our basic moral hazard framework to incorpo-
rate this model of adverse selection and, in Section 8, why it admits (nearly)
efficient equilibrium payoffs.

Our methods are based on dynamic programming and geometry. Several
papers before ours have exploited the link between dynamic programming and
repeated games, including Abreu (1988), Abreu, Pearce, and Stacchetti (1986,
1990), Fudenberg and Maskin (1986b), Matsushima (1989), Mertens (1987),
Radner, Myerson, and Maskin (1986), and Spear and Srivastava (1987). Our
methods are closest to those of Abreu, Pearce, and Stacchetti and Matsushima.
We discuss the connections in Sections 4-6.

The papers by Radner, Rubinstein, and Rubinstein and Yaari used a tech-
nique based on “review strategies.” This technique divides time into a sequence
of review phases, at the end of each of which a test is conducted to determine
the likelihood that some player deviated from equilibrium a nonnegligible
fraction of times. We compare this approach with ours in Section 6.

In Section 2, we lay out the basic model. Section 3 presents two examples that
illustrate the methods and the principal concepts of this paper in some detail.
We recommend this section to the reader wishing an overview of our ideas. The
formal analysis begins in Section 4.

2. THE MODEL

In the stage game, players move simultaneously, and player i=1,...,n
chooses an action a; from a finite set A;. Let m; be the number of elements in
A, e, m;=|A4,l. We call vector a €A = X_ A, a profile of actions. Profile a

4 Unlike us, these authors were not concerned with characterizing the entire set of equilibrium
payoffs. The specific equilibria that they studied, however, were ineflicient.
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induces a probability distribution over the possible public outcomesy € Y, where
Y is a finite set with |Y| = m elements. Each player i’s realized payoff r(a;, y)
depends on his action a; and the public outcome® y, but not on a ; for j# i%
Let 7(yla) be the probability of y given a. Player i’s expected payoff from
action profile a is

g(a)= Z m(yla)ri(a;,y).

yeY

A mixed action a, for each player i is a randomization over A4,. Let a(a;) be
the probability that «;, assigns to a,, and ‘adopt the shorthand r(e;, y)=
L, e a,aia)ria; y). For each profile a = (ay,...,a,) of mixed actions, we can
compute the induced probabilities of outcomes,

m(yla) = X w(yla)a(a),

acA

and the expected payoffs

g(a)=Y X m(vla)a(a)r(a;y),

yeEY a€A

where a(a) = afa,)aa,) - a,(a,). We denote the profile in which player i
plays a; and all other players follow profile a by (a,,a_); w(yla;, a_;) and
g(a;, a_,) are defined analogously.

Our formulation encompasses the following models considered in the re-
peated games literature.

First, suppose that the public outcome is simply the profile of actions. In this
case, we have the conventional framework of perfect observability ex post, as n
Fudenberg and Maskin (1986a).

Second, with a judicious interpretation of the variables, we can obtain a finite
version of the standard principal-agent model. In this model, one player, the
principal, moves first and selects one of a finite number of monetary transfer
rules, where the transfer to the other player, the agent, depends on output.
Next, the agent selects an effort level (unobservable to the principal), which
stochastically determines output. This is, therefore, a model of one-sided moral
hazard. We can identify the principal’s action with a transfer rule. Because we
have modeled the players as moving simultaneously—whereas actually the
agent moves after the principal—we must interpret the agent’s action as a
contingent effort level, that is, a function dependent on the principal’s move. A
public outcome is then a realized output level together with the principal’s

> Lehrer (1988), Fudenberg and Levine (1991), and Kandori and Matsushima (1992) consider
repeated games in which each player receives a private signal of the others’ actions.

6Actually, a good many of our results extend to the case in which r; depends directly on all
players’ actions (see Section 6).
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monetary transfer rule. (By formally including the principal’s action as part of
the outcome, we make it observable to the agent.)’

Third, we can think of the players as a partnership in which each player
supplies an unobservable input a, to a production process, as in Radner (1986).
Output y depends stochastically on the quantities of all inputs and is divided
among the partners in a prearranged way. This is a model of multi-sided moral
hazard.

Fourth, we can imagine that the players are Cournot oligopolists whose
outputs a; are not publicly observable. Demand is stochastic, and so the market
price, y, is a stochastic function of output (as in Green and Porter (1984)).

Finally, we can interpret the model as an insurance scheme under adverse
selection (c.f. Green (1987)). Specifically, suppose that player i is subject to a
stochastic preference shock, a; is a function mapping the realization of the
shock to a public “report” (not necessarily the truth), and y is the profile of
reports together with a vector of transfers that the players make among
themselves as a function of these reports.

Following convention, let ' be the convex hull of the set of feasible payoft
vectors {g(a) = (g(a),..., g,(a))la € A}. We shall assume that IV has nonempty
interior. (This is sometimes called the full-dimensionality condition.) As sug-
gested in footnote 2, such a condition is typically imposed even for perfect-
observability versions of the Folk Theorem. The extremal points of 1V are those
that are not convex combinations of other points in V; extremal action profiles
are those that generate extremal payoffs. Note that for any extremal point there
corresponds at least one extremal profile that is pure. Let yp, =
min, max, g{a;a_;) be player i’s minimax value, and let a’; be mixed
actions by the other players that attain this minimum. That is, v, =
max,, ga;,a" ). Let a! be any best-response by player i to &', that is, a
(mixed) action such that g(al,a’ ) =v, We call a'=(a},a" ;) a minimax
profile against player i.

The payoff vector v is individually rational if v, > v, for all players i; it is
strictly individually rational if this inequality is strict. Let V* = {v € V|v; > v; for
all i} be the set of feasible, individually rational payoffs. The Folk Theorem for
the case of observable actions asserts that any strictly individually rational
payoff vector in VV* can be supported by an equilibrium of the repeated game if
the discount factor is sufficiently close to one.

7Although this model has the same normal form as the standard principal-agent game, it has
more subgame-perfect equilibria because of the simultaneity of moves (in a simultaneous-move
game, any Nash equilibrium is trivially subgame-perfect). To ensure that the equilibrium sets in the
two models are the same, we could invoke solution concepts such as trembling hand-perfection
(Selten (1975)) or sequential equilibrium (Kreps-Wilson (1982)). (Once we repeated the game,
however, we would then have to modify these concepts since they apply only to finite games,
whereas a repeated game has a continuum of strategies.) Alternatively we could perturb the game
slightly so that the principal literally makes “mistakes” with small probability, in which case no
strategy for the agent that is ruled out by backward induction in the sequential (standard)
principal-agent game can be a weak best response in our simultaneous formulation. We should note,
however, that some of our results guarantee strict equilibrium, in which case any of the usual
refinements are satisfied.
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Let us now turn in detail to the repeated game. In each period r=0,1,...,
the stage game is played, resulting in a public outcome y’. The public history at
the end of period ¢ is A" =(y°,..., y"). Player i’s private history at the end of
period ¢ is h'=(a’,...,a!). A strategy o, for player i is a sequence of functions
{o/)_,, where o maps each pair (h'~!,h}™") to a probability distribution over
A,

Each strategy profile o = (o, ..., 0,) generates a probability distribution over
histories in the obvious way, and thus also generates a distribution over
sequences of stage-game payoff vectors. Players discount future payoffs with a
common discount factor 8, and player i’s objective in the repeated game is to
maximize the expected value of the discounted sum of his stage game payofis.
This is equivalent to maximizing his expected discounted average payoft (the
expected discounted sum multiplied by 1—8). Thus, if {g/} is player i’s
sequence of stage-game payoffs, he maximizes

(1-8) X d8'gl.
t=0

(We use average rather than total payoffs in order to measure repeated and
stage-game payoffs in the same units, that is, in “payoffs per period.”)

For most of the paper we will focus on a special class of Nash equilibria
called perfect public equilibria. A strategy o; = {g;'} for player i is public if, at
each time ¢, o/ depends only on the public history A'~! and not on i’s private
history h'~'. A perfect public equilibrium (PPE) is a profile of public strategies
that, beginning at any date ¢ and given any pubic history A’ -1 form a Nash
equilibrium from that point on. This definition allows a player to contemplate
deviating to a non-public strategy, but such deviations are irrelevant: If the
other players use public strategies, player i cannot profit from doing otherwise.

For any 8, let E(5) be the set of discounted average payoff vectors that
correspond to PPE’s when the discount factor is 8. Clearly E(8) < V*. Con-
versely, in our version of the Folk Theorem (Theorem 6.2) we will show that any
point in the interior of V'* lies in E(8) for 8 near enough to 1.

In a PPE we can ascribe to each player probabilistic beliefs about which node
pertains for each of his information sets in the repeated game. However, these
beliefs play no role in the equilibrium: all nodes in any one of his information
sets lead to the same probability distribution over his payoffs (since other
players’ private information—their past actions—does not affect their behavior).
That is why even though—because of imperfect observability—there may be no
proper subgames of the repeated game, we can treat each public history as if it
gives rise to a distinct subgame.

It is clear that a PPE together with any beliefs consistent with Bayes’ rule
form a perfect Bayesian equilibrium (PBE):® at any of his information sets a

8 Here we use the weakest notion of perfect Bayesian equilibrium: actions are required to be
sequentially rational given beliefs, and beliefs after any history to which the equilibrium assigns
positive probability are obtained using Bayes’ rule. (Even this weak form of perfection is stronger
than Nash equilibrium, as it rules out players using dominated strategies after zero-probability
histories.)
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TABLE 3.1
Player 2
w s
w 1,1 -1,2
Player 1
s 2,—-1 0,0

player’s equilibrium strategy maximizes his expected payoff, given others’ strate-
gies and his beliefs about nodes. A PPE, moreover, is “recursive” (Mertens
(1987)) in the sense that it induces a PPE in every continuation game. This
feature is important for our dynamic programming approach, as we ‘“decom-
pose” equilibrium payoffs for the repeated game into first-period payoffs and
continuation payoffs, and it is essential that these continuation payoffs them-
selves be the payoffs of a PPE.

In contrast, a PBE need not be recursive, and hence need not be a PPE. (This
was pointed out to us by A. Neyman.) Indeed, in games with three or more
players, some PBE payoffs may lie outside V*. We provided an example in the
1989 version of this paper; Lehrer (1988) has studied the issue in greater depth.’

3. EXAMPLES

To illustrate the main ideas of this paper, we consider two versions of a
simple partnership game. In both versions, there are two partners, i = 1,2, each
of whom has two (unobservable) actions, “work” (w) and “shirk” (s). Expected
output is 8 if both partners work, 4 if one works and the other shirks, and 0 if
both shirk. Each player’s utility is half of total output minus the disutility of his
effort; work imposes a disutility of 3, and shirk costs 0. Thus the strategic form
of both versions of the game is given in Table 3.1, and the unique equilibrium is
(s, 5).

Although for any profile of effort levels, the corresponding expected output in
the two versions is the same, the probability distributions over output differ. In
the first version, there are two possible (publicly observable) output levels, y =0
and y = 12. If both players work, the probability that y = 12 is 2 /3, if only one

® There is an important special case in which the sets of perfect Bayesian and perfect public
equilibrium payoff vectors coincide, namely, a two-player game where only one player’s actions are
imperfectly observable (see Sections 7 and 9). In this case dynamic programming is applicable to
perfect Bayesian equilibrium (PBE) because the continuation payoffs of a perfect Bayesian equilib-
rium must themselves correspond to a PBE. To see why, note that the difficulty that continuation
equilibrium presents is that the imperfectly observable player’s strategy might depend on his
previous actions. We can, however, replace his strategy by one that averages over his strategies for
all possible sequences of his previous actions. If we hold the other player’s strategy fixed, this new
strategy remains a best response (since it is an average of best responses) and leads to the same
payoffs as before. If, moreover, the average is taken in a way that mimics the other player’s beliefs
about the previous actions, then that other player’s strategy remains a best response too. Thus, we
have constructed a perfect Bayesian equilibrium with the same payoffs as the continuation
equilibrium. For details see Fudenberg and Maskin (1986b).
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works the probability is 1/3, and if neither works it is 0. This example is similar
to the Radner, Myerson, and Maskin (1986) counterexample in that there are
only two public outcomes. As we shall see, this means that repeated-game
equilibrium payoffs are bounded away from efficiency. In the second version,
there are three possible output levels, y = 12, 8, and 0. If both players work the
probability distribution over these levels is (1,/3,1/2,1/6); if player 1 shirks and
2 works, the distribution is (1/3,0,2/3); if player 1 works and 2 shirks, it is
(0,1/2,1/2); and if both players shirk, it is (0,0, 1)."°

Consider the first version. From Table 3.1, note that if v=(v,,v,) is a
Pareto-efficient point in V'*, v, + v, > 3/2. Nonetheless we claim that, in any
equilibrium of the repeated game in which the discount factor is less than 1, the
discounted average payoffs sum to no more than 1. To see this, fix § and let
y = max{v, + v,l(v,,v,) € E(8)}. If, contrary to the claim, y > 1, choose v &
E(8) such that v, + v, = y. Then, we can decompose v so that

(3.1)  v,=(1-8)g(a) +8[m(12la)w,(12) + w(Ola)w,(0)], i=1,2,

where a = (a,, a,) is the profile of first-period actions and w,(y),y =0,12, is
player i’s continuation payoff if first-period output is y in the repeated-game
equilibrium corresponding to v. We note that «; puts positive probability on
“work” for i =1,2: if not, then, from Table 3.1 the first-period payoffs could
sum to at most 1, implying, from (3.1), that either (w (0), w,(0)) or (w(12), w,(12))
would sum to more than ¥y, a contradiction. Moreover, because player 1 works
with positive probability, his payoff from shirking cannot exceed that from
working, i.e.,

(32)  (1-8)(2uy— 1) +8[(Ga + H)w(12) + (= 12+ 5)wy(0)]
>(1-6)2pu, + 5[%#2"’1(12) + (‘%I—Lz + 1)W1(0)] )

where u, is the probability that a, assigns to “work.” Simplifying (3.2), we
obtain

3(1—5)
(3.3) w1(12) - —*—8'— = WI(O).

Substituting for w,(0) in (3.1) using (3.3) and noting that 2u, —1<1 and
m(0la) > 1/3, we have

(34) v, <éw,(12).

Similarly for player 2

(3.5) U, < 6w,(12).

101 this second version, the profiles (shirk, work) and (work, shirk) induce different probability
distributions over outcomes. This asymmetry simplifies the analysis by allowing us to construct
approximately efficient equilibria in pure actions, but it is not required for our results, as explained
in footnote 13 and the discussion following Condition 6.2 in Section 6.
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However, adding (3.4) and (3.5) and noting that w,(12) + w,(12) <y vyields
v, + v, < 8y, a contradiction. We conclude that the hypothesis that y > 1 must
be false.

Repeated-game equilibria are necessarily inefficient in this example despite
the fact that the profile (work, work)—as well as any other profile—is enforce-
able. l.e., we can find continuation payoff vectors w(12) and w(0) such that
a, = work maximizes''

(3.6)  (1-8)g,(a,,work) +8(w(12|a,, work)w,(12) +m(0la,, work)w,(0)),

and a,=work maximizes the corresponding expression for player 2. The
problem is that to induce both players to work, we must threaten them both
with a low continuation payoff if y =0 (i.e., we must have w,(0) < w,(12) for
1=1,2). This need to “punish” both players for low output (which occurs with
positive probability even when both players work) is what creates the ineffi-
ciency.

We now turn to the three-outcome version of the partnership game. Choose a
small ball W in the interior of V* (see Figure 3.1). We claim that for § near
enough 1, Wc E(5). Hence the Folk Theorem extends to this game. From
dynamic programming (see Lemma 4.2), it suffices to show that every point
v € W can be decomposed so that, for some profile @« and continuation payoff
vectors w(12), w(8), w(0) € W,

v;=(1-9)g/(a) +6Z7T(y|a)w,-(y)

>(1-8)g(aj,a ) +8m(yla),a_)wi(y),
y

forall o;and i=1,2.
Divide W into four parts, A, B, C, and D, as shown in Figure 3.1. Consider v

on the boundary of A. To decompose v, choose a = (work,work). To ensure
that w(12), w(8), and w(0) belong to W, we select them to lie along a line P’

"' The requirement that a, = work maximize (3.6) can be re-expressed as
(*) vy > 2(1 = 8) + 8(5w,(12) + 3w,(0)).
If we set
(**) 1-8+8(3w(12) + 3wy (0)) =vy,

then, (*) and (* *) become

vy —2(1-8)
3 "% wi(12) [
(xx*) (§ g)(wl(O))< vi-1+8
3

(There is a slight abuse of notation here since the second inequality in (* = *) is actually the
equation (* *).) The matrix of conditional probabilities in (* * =) has rank 2, equal to the number of
player 1’s actions. This, in our terminology, means that the profile (work, work) has individual full
rank for player 1—and so (* * x) can be solved with equality.
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(1,1) = glwork, work)

-

FiGure 3.1

parallel to the tangent P, to W at v (see Figure 3.1). Thus (work, work) will be
enforceable with respect to the line (hyperplane) P'. P’ takes the form
{(v, v)IB Y, + B, = c). Hence, sclecting w(12), w(8), and w(0) amounts to
solving the system:
(3.7) v, 22(1=38) +8(3w,(12) + 3w,(0))

(player 1 does not gain from shirking),
(3.8)  0;22(1=8) +8(3w,(8) + 3w,(0))

(player 2 does not gain from shirking),

(3.9)  1=8+8(3w,(12) + 5w,(8) + gw(0)) =0,
(player 1’s expected payoff is v))."?

If & is near enough 1, w(12), w(8), w(0) will lie near the intersection of P’ and
the line through g{a«) and v, and so will lie in W. Because these continuation
payoffs lie in P’, we can replace each w,(y) in (3.8) by (c — Bw(y))/B, and

12 We can omit the requirement that player 2’s expected payoff be 5, since, given (3.9), and the
stipulation that w(12), w(8), and w(0) lie in P’, this is ensured automatically.
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rewrite (3.7)—(3.9) as equalities to obtain

v, —2(1—-28)

5
L9 2 12
o3 wi(12) B,(2(1 = 8) — ;) + b

(3.10) 0 5 s[{wi® [=

5
b T w(10) o
oA v,—1+5

5

Now the matrix in (3.10) has full rank, and so (3.10) can be solved with equality.
In our terminology, the profile (work,work) has pairwise full rank. Roughly
speaking, a profile a has this property for players i and j if every deviation that
i or j could make from «a induces a different distribution over public outcomes.
Pairwise full rank ensures that the profile (work,work) is enforceable with
respect to the line (hyperplane) P’ (or, for that matter, with respect to almost
any other hyperplane).’* From Figure 3.1, we see that this means that, when low
output (y = 0) occurs it is not necessary to punish both players, in contrast with
the two-outcome partnership game. That earlier game had too few public
outcomes to have profiles with pairwise full rank.

We have shown that any point v in 4 can be decomposed so that the
continuation payoffs lie in W when § is near 1. Points in B, C, and D can be
decomposed similarly (and even more easily). Indeed, W is decomposable on
tangent hyperplanes since each boundary point ¢ is decomposable in such a way
that, as in Figure 3.1, the continuation payoffs lic on a hyperplane parallel to
the tangent to W at v. In Section 4 we will show more generally that any set W
that is decomposable on tangent hyperplanes belongs to E(8) for § near enough
to 1.

The existence of a profile having pairwise full rank was the key to our
demonstration that the Folk Theorem extends to this partnership game. In
Theorems 6.1 and 6.2 below we show that the existence of such a profile allows
us to draw Folk-Theorem-like results in games in general. There are, however, a
good many games of interest that have no profiles with pairwise full rank but to
which the Folk Theorem nevertheless applies. One prominent example is a
principal-agent model. Suppose that the principal (player 1) first proposes a
compensation scheme in which the agent’s (player 2’s) monetary payment ¢ is
contingent on observable output y. Output is either “high” (y = 12) or “low”
(y = 0). The principal’s von Neumann-Morgenstern utility function is y — ¢. The

Y If we modified the three-outcome example so that the profiles (shirk, work) and (work, shirk)
induced the same distribution over outcomes, then the profile (work, work) would no longer satisfy
pairwise full rank. However, pairwise full rank would still hold at many mixed-action profiles in
which both players work with probability near 1, and this suffices for our conclusions (see the
discussion following Condition 6.2).



1008 D. FUDENBERG, D. LEVINE, AND E. MASKIN

agent responds by choosing one of three possible (unobservable) effort levels:
low (a, = 0), medium (a, = 1), or high (a, = 2). Low, medium, and high efforts
result in probabilities 0, 1/2, and 2 /3, respectively, of high output. The agent’s
utility function is u(t) — a, where u is strictly concave.

Suppose that the principal is restricted to proposing compensation schemes
that yield the agent nonnegative expected utility. Let us assume that, if the
agent’s actions were observable, the equilibrium effort by the agent would be
a, = 1. Under that assumption, lack of observability causes a loss of welfare:
from the standpoint of risk-sharing the agent’s compensation should be fully
insured, but in that case he will choose a,=0 rather than a,=1. Thus
equilibrium in the one-shot game with unobservable actions is Pareto-inefficient.
Moreover, unlike in the three-outcome partnership game, no profile has pair-
wise full rank; indeed, no profile even has individual full rank for the agent (see
footnote 11).'4 Nevertheless payoffs that are arbitrarily close to the Pareto
frontier are attainable when the game is repeated. This is because, despite the
lack of full rank, a Pareto-efficient profile (¢, a,) is still enforceable. Specifically,
from Pareto efficiency there exist weights A, and A, such that a) =a, maxi-
mizes

MEm(yla)(y — 1) + A(u(1) —a3).

Hence, if we take

— Al
way) = —5 Az(y t),

a', = a, maximizes player 2’s payoff. Because the principal’s actions are observ-
able, (¢, a,)’s enforceability means that it is, in fact, enforceable with respect to
(almost) any hyperplane (refer again to the discussion before formula (3.7) for
the concept of enforceability with respect to hyperplanes): once the agent’s
continuation payoffs w,(y) have been specified to induce him to choose a,, we
can simply choose the corresponding w,(y) so that the resulting vector w(y) lies
in the desired hyperplane. Hence, the same kind of decomposition on tangent
hyperplanes that we performed for the three-outcome partnership game can be
done here. We show in Section 7 that there is a much broader class of games
than principal-agent models, viz., games with a “product structure,” to which
the Folk Theorem extends without invoking any full rank conditions.

4. ENFORCEABLE ACTIONS AND DECOMPOSABLE PAYOFFS

We now introduce the concepts of enforceability and decomposability for-
mally. The section culminates in the demonstration that if a set of payoff vectors

4 From footnote 11, we see that a profile’s having individual full rank is equivalent to the
corresponding matrix of conditional probabilities having rank equal to the number of the agent’s
actions. But the matrix’s rank cannot exceed the number of observable outcomes m (since the
number of columns equals m), which in this case is only 2, less than the number of actions, 3.
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is decomposable on tangent hyperplanes, then the payoffs are attainable as
perfect public equilibria for discount factors sufficiently near one. Readers who
are more interested in the statement of the Folk Theorem and its applications
than in the logic of its proof may wish to skip this section on first reading and
proceed to Section 5, which develops readily verifiable sufficient conditions for
decomposability on tangent hyperplanes.

LemMma 4.1: E(8), V, and V* are compact sets, and V and V* are convex.

Proor: The compactness of E(8) is well known (see, for example, Fudenberg
and Levine (1983)). The sets V' and V'* are obviously compact; V' is convex by
definition, and V'* is the intersection of two convex sets. Q.E.D.

DerFiNiTION 4.1: Let 6 and WCR” be given. Profile « is enforceable with
respect to W and § if there exist ¢ € R” and a function w:Y — W such that, for
all 7,

i (1-8)g(aa_) +3 Y m(yla,a_Jw(y),

for all a; with «;(a;) >0,
v2(1-8)gi(a,a_)) +8m(yla;, a_)wi(y),
y
for all a; with «,(a;) =0,

(4.1)

where w/(y) is the ith component of w(y). We say that the set {w(y)},cy
enforces a with respect to ¢ and 8, and that v is decomposable with respect to
a, W, and & (v is decomposable via (4.1) into first-period payoffs g(a) and
continuation payoffs lying in W). If « is enforceable with respect to some W
and &, we say simply that it is enforceable. We let B(W, ) be the set of all
payoff vectors that are decomposable as we vary the profile a with respect to
fixed W and 8. If W c B(W, 8) for some §, we say that W is self-decomposable.

Condition (4.1) requires that if the others play «_; and player i’s expected
continuation payoff contingent on outcome y is w,(y), then i obtains the same
average payoff from all actions in the support of «;, and no action yields a
higher average payoff.

The concept of a self-decomposable set of payoffs was introduced by Abreu,
Pearce, and Stacchetti (1986, 1990) (who used the term “self-generating”). They
showed how to apply the principle of optimality of dynamic programming to a
class of games with imperfect public information, and established that if W is
bounded and W cCB(W,5), then W consists of equilibrium payoffs in the
repeated game with discount factor & (in particular, this means that W 1'*).!3

15 Abreu, Pearce, and Stacchetti considered only pure-strategy equilibria, but the essence of their
argument carries over to perfect public equilibria in mixed strategies (see Lemma 4.2).
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To obtain results for discount factors near one, we find it convenient to work
with the weaker concept of local self-decomposability.

DerFiNiTION 4.2: A subset W of R” is locally self-decomposable if for each
v €W there is a § <1 and an open set U containing v such that Un W
B(W, 5).

Note that in the definition of local self-decomposability (in contrast to that of
self-decomposability) the discount factor may vary over W.

Lemma 4.2: If W CR” is compact, convex, and locally self-decomposable, then
there exists & < 1 such that W c E(8) for all 6 € (&, 1).

Proor: Since W is locally self-decomposable, there exist an open cover {U}
of W and associated discount factors {§,} such that for each v € U there exists
a, that is enforceable with respect to W and &, and satisfies (4.1). Since W is
compact, {U} has a finite subcover. Let &' be the maximum of the §;’s on this
subcover. We claim that any v € W is in B(W, 8) for any § € (&', 1). To see this,
set

(42)  w(y;8)=[(8-38,)/5(1-8y)]v
+[8y(1-8)/8(1 = 8,)]w(y;8y),

where {w(y;8,)), cy enforces a, with respect to v and §;. It is easy to check
that (4.1) is satisfied for a,,v, and any & > §'; moreover, w(y; 8) is in W since
both v and w(y; 6,) belong to W, and W is convex.

To complete the proof, we show that W C E(8). Fix an arbitrary v € W, and
construct a strategy profile o as follows. Let «, and w(-) satisfy (4.1) for v, 3,
and W, and let the date-0 actions be «,. For each date-0 outcome v
w(y®) € W, and so there is an action profile a,, 0, and continuation function
w(-) that satisfies (4.1) for w(y?), 8, and W. We then let the date-1 actions be
o(h®) = a,,,0,. Continuing iteratively, we define action profiles in each period as
a function of the public history to date. By construction and the boundedness of
W, the sequence of actions thus defined gives rise to the discounted average
payoff vector v. The principle of optimality implies that no player can gain by
deviating, since (4.1) implies that no one-period deviation is profitable, and the
payoffs are uniformly bounded. Q.E.D.

Instead of explicitly constructing equilibrium strategies with particular payoff
vectors (see, however, the following paragraph), we give sufficient conditions for
a set of payoffs to be locally self-decomposable; the existence of the correspond-
ing equilibrium then follows from Lemma 4.2. Each set U that we identify not
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only satisfies Definition 4.2, but also the properties that (i) all payoff vectors in
U can be decomposed with respect to a single action profile a,;, and (ii) there
exists a continuation function w(-;8,) such that any v € U is decomposable
with respect to ay, the set {w(y;8,)}, <y, and discount factor &;,.

This allows us to be a bit more concrete about the structure of the equilib-
rium strategies. Specifically, fix a locally self-decomposable set W. Suppose that
we wish to attain the payoff vector v € W in equilibrium. As in the proof of
Lemma 4.2, W is covered by finitely many regions U. (There is no harm in
assuming that these regions form a partition of W, although strictly speaking,
this would conflict with their being open.) We can now define a payoff statistic
v’ and construct equilibrium strategies in which, in period ¢, «; is played
provided that v’ lies in U (recall (i) above). To define v, set v® =, and take

vi=[(8—-8y,)/8(1=8,)] v+ [8,(1-8)/8(1 =8,)|wu(y;6y).

After updating the payoff statistic, players determine the region to which v’*!
belongs and play the corresponding action profile.

For the remainder of this section we consider action profiles that are
enforceable with respect to particular hyperplanes (we omit any mention of
discount factors here by virtue of Lemma 4.3 below), that is, sets of the form
P=v' +H(={v'+w|we H)}) where v’ is a fixed vector and H is an (n — 1)-
dimensional linear subspace of R™.!® Theorem 4.1 shows that if a set of payofls
is “decomposable on tangent hyperplanes” (which means that the correspond-
ing action profiles are enforceable with respect to hyperplanes that are tangent
to the set; see Definition 4.4), then it is locally self-decomposable. The following
lemma is a useful preliminary:

Lemma 4.3: Suppose that P is a hyperplane in R" containing the origin. If « is
enforceable with respect to P and some 8, then (i) a is enforceable with respect to
any translate P' =0’ + P and any & > 0; (ii) there is a constant k such that, for
all 8 and v € R", there exists a continuation function w' :Y — P' such that
W (y)l,cy enforces a with respect to v' and &, v'=Y m(yla)w'(y), and
Iw'(y) — vl <«(1—8)/8 forally €Y, where || || denotes Euclidean distance.

Remark: Part (i) of the lemma allows us henceforth to avoid any mention of
discount factors when stating that a profile is enforceable with respect to some
hyperplane. It also implies that enforceability with respect to P is equivalent to
enforceability with respect to all translates of P, and so we will sometimes
rather loosely identify a hyperplane with its translates. Part (ii) shows that when
enforcing a with respect to a hyperplane, continuation payoff vectors can be
found that differ from each other by no more than order 1 — § when § is near 1.

P can also be expressed as P ={v € R"|TB,v; = c} for some nonzero vector (By,...,8,) and
constant c.
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This observation, coupled with the fact that sets with smooth boundaries can be
approximated by their tangent hyperplanes, is the basis of Theorem 4.1.

Proor: Suppose that « is enforceable with respect to P and 8 using the
continuation function w(-). Clearly « is enforceable with respect to § and any
translate v’ + P since we can simply add v’ to all continuation payoff vectors
and 8u' to the other side of the equation. To see that we can enforce a with
respect to any discount factor and establish the claims of part (ii), choose an
arbitrary v’ and &', and take

wi(y)=v+[8(1-8)/8(1-8)][w(y)-w],

where w =X m(yla)w(y). Computation verifies that a is enforceable with
respect to &' and P’, that & m(yla)w'(y) =v’, and that the difference between
w'(y) and v’ equals

[6(1-8)/8(1-8)]w(y) —wll. Q.E.D.

DErFINITION 4.3: A set W C R” is smooth if (i) it is closed and convex; (ii) it
has a nonempty interior; and (iii) at each boundary point v there is a unique
tangent hyperplane P,, which varies continuously with v, i.e., the boundary is a
CZ%-submanifold of R”.

We indicated in Section 3 that extending the Folk Theorem to games with
unobservable actions depends on whether we can enforce action profiles with
continuation payoffs lying in particular hyperplanes. This motivates the follow-
ing definition.

DEeFINITION 4.4; A smooth subset W V* is decomposable on tangent hyper-
planes if for every point v on the boundary of W there exists a profile « such
that (i) g(a) is separated from W by the (unique) (n — 1)-dimensional hyper-
plane P, that is tangent to W at v and (i) there exist continuation payoff
vectors {w(y)}, ., in P, that enforce al’

Note that in view of the remark following Lemma 4.3 we have not specified a
discount factor with respect to which the continuation payoffs {w(y)}, .y en-
force « in part (ii). As we shall see next, the ability to decompose W on tangent
hyperplanes implies that it is locally self-decomposable. In the proof of this
implication, we will choose enforcing continuation payoffs to lie on a translate
of P, (which Lemma 4.3 permits us to do) so that they belong to W.

17 Strictly speaking, v in this definition is not decomposable with respect to the tangent
hyperplane P, (since it actually lies in P.), but rather with respect to one of P,’s translates (see the
paragraph following the definition). Thus the locution “decomposable on tangent hyperplanes” may
be a slight misnomer. It is, however, less cumbersome than “decomposable with respect to a
translate of the tangent hyperplane.”
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egla)

FiGure 4.1

THeEOREM 4.1: If a smooth set WCV* is decomposable on tangent hyper-
planes, then it is locally self-decomposable. Hence, from Lemma 4.2, there exists
& <1 such that, for all §> 8, W E(8)."®

SKETCH OF PrOOF: Fix v on the boundary of W and let P, be the tangent
hyperplane to W at v (see Figure 4.1). By hypothesis, there exist a profile a« and
continuation function w:Y — P, such that {w(y)}, ., enforces @ and g(a) is
separated from W by P,. We must show that, for § near enough to 1, v is
decomposable with respect to «, W, and é.

For given & choose w' so that v =(1 — §)g(a) + w’. For § near enough to 1,
w' is near v and so lies in the interior of W, since g(a) is separated from W by
P.. By Lemma 4.3, profile « is enforceable with respect to the translate P’ of P,
that passes through w’, and by adding an appropriate vector we can ensure that
the continuation payoffs satisfy w' = Lm(yla)w(y). Lemma 4.3 then guarantees
that the distance between w' and w(y) is no greater than of order (1 —8)/4.

Now because W is smooth and the distance from v to w' is of order
(1 —8)/8, the distance from w’ to the boundary of W along P’ is of order no
less than /(1 —6)/6 (see Figure 4.1). Because /(1 —6)/8 is bigger than
(1 - 8)/8, therefore, the continuation payoffs {w(y)} lie in W for & near 1, as
required. Details may be found in Appendix 1.

5. ENFORCEABILITY AND IDENTIFIABILITY

Fix a smooth subset W of VV*. Theorem 4.1 showed that all payoff vectors in
W can be attained as equilibria provided that any boundary point of W can be
decomposed using a suitable action profile that is enforceable with respect to
the tangent hyperplane at that point. This section relates enforceability with

18 Matsushima (1989) used the concept of decomposability on tangent hyperplanes to show that
some efficient outcomes can be approximated by repeated game equilibria for discount factors near
1. The principal differences between his approach and ours are that (i) Matsushima assumed that
the set of equilibrium payoffs has a smooth boundary, whereas we work with subsets of equilibrium
payoffs that can be chosen to have smooth boundaries; (ii) Matsushima supposed that first-order
conditions are sufficient for equilibrium, while we require no such supposition; and (iii) Matsushima
was interested in showing only that there exist (approximately) efficient repeated-game equilibria,
whereas we are more concerned with characterizing the full set of equilibria.
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respect to hyperplanes to the ability of players to identify one another’s actions
on the basis of public outcomes.

Consider an arbitrary profile a. If « is to be enforceable with respect to
some hyperplane, it must first simply be enforceable. Suppose that player i has
an action &, such that profiles (a}, a_,) and (@;, @ ;) lead to the same probabil-
ity distribution over public outcomes. If g{a}, a_,) > g{a;, a_,), then no choice
of continuation payoffs can enforce profile a, since player i does better in the
initial period with o/ than with e;, and has exactly the same expected continua-
tion payoff in either case. This difficulty can be ruled out if there is no a; # a;
for which (), «_,) and (a;, @_;) induce the same probability distribution. Since
mixed action profiles correspond to convex combinations of pure actions (and in
particular the weight on each pure action is between 0 and 1), it is sufficient that
no linear combination of pure actions in A; leads to the same distribution as «;
when other players play «_;.

Before stating this condition more formally, we recall that m, is the number
of actions in A, and that m is the number of outcomes in Y. Thus 7(-|-,a_;)
can be thought of as an m; X m matrix whose rows correspond to actions ; and
whose columns to public outcomes y. To simplify notation, let M(a ;)=
(-], a_).

DeriniTioN 5.1: The profile a has individual full rank for player i if II(a_))
has rank equal to m;, that is, the m, vectors {m(-la; a_))}, c 4, are linearly
independent. If this is so for every player i, a has individual full rank."”

Note that if @ has individual full rank, the number of observable outcomes m
must be at least max; m,.

LemMA 5.1: If a has individual full rank, then a is enforceable.

Proor: The constraints in (4.1) for player i are satisfied if
Z”T()"ai’ aﬂ‘)wi(«") = (Ui —(1-8)g(a,; a—i))/5a

for all a,. The full rank condition for player i ensures that this system can be
solved for the w/(y)’s. Q.ED.

This lemma establishes that if, given «_;, we can identify player i’s actions
probabilistically, we can choose continuation payoffs to make him exactly
indifferent among all his actions.

We now turn to enforceability with respect to hyperplanes. For our purposes,
we must distinguish between coordinate and regular hyperplanes. The coordi-
nate hyperplanes are orthogonal to a coordinate axis, whereas any hyperplane
that is not coordinate is regular. Algebraically, a hyperplane {v € R*|LB,v, = c}

1% This condition was introduced in Fudenberg and Maskin (1986b).
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is coordinate if exactly one coefficient B; is nonzero; it is regular if it has two or
more nonzero components.

Suppose that P is a coordinate hyperplane that is orthogonal to the ith axis.
Then, in (4.1), all the w(y)’s must have the same ith component if they belong
to P. Hence for profile a to be enforceable with respect to P, «; must be a
best-response to «_; in the stage game (that is, a static best-response). More-
over, if « is enforceable, this best-response property for player i is sufficient for
a to be enforceable with respect to P because this hyperplane places no
restriction on the components other than i.

An equilibrium profile of the stage game obviously satisfies the best-response
property. It is also enforceable since the constraints (4.1) are satisfied if all the
w(y)'s are the same. Similarly, a profile @’ that maximizes player i’s payoff on
the joint action set A clearly has the best-response property for player /. As we
shall see in Section 7, such a profile is also enforceable under mild regularity
conditions. These facts enable us to prove extensions of the Folk Theorem that
use a stage-game equilibrium (rather than the minimax point) as the threat
point. “Minimax-threat” extensions require additional hypotheses since, al-
though a minimax profile o' against player i satisfies the best-response property
for player i, it need not be enforceable.

For future reference, we summarize this discussion in the following lemma.

Lemma 5.2: If a profile a is enforceable and satisfies the best-response property
for player i, then it is enforceable with respect to coordinate hyperplanes orthogo-
nal to the ith coordinate axis. The best-response property is satisfied by (i) a profile
that maximizes i’s payoff on A, (ii} a minimax profile against i, and (iii) a static
equilibrium profile; static equilibrium profiles are enforceable with respect to all
hyperplanes, coordinate or regular.

We now consider regular hyperplanes. We provide conditions under which
profile « is enforceable with respect to all regular hyperplanes.?’ We will also
consider strong enforceability.

DerFiNniTioN 5.2: The profile « is strongly enforceable with respect to the
hyperplane P if, in applying the definition of enforceability, we can find a
continuation function w:Y — P such that the inequalities (4.1) hold with equal-
ity for all players and actions.

We first show that we can limit our attention to two-player games. Specifi-
cally, consider pairwise hyperplanes, i.e., (regular) hyperplanes for which only
two B,’s are nonzero (that is, no constraint is imposed on the payoffs of the
other n — 2 players).

» By Lemma 4.3 the discount factor is irrelevant when considering whether a profile is
enforceable with respect to a hyperplane.
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DEeriniTION 5.3: For given i and j, a profile that is enforceable with respect
to all pairwise hyperplanes in which only B, and B, are nonzero is called
enforceable with respect to all ij-pairwise hyperplanes. If it is so enforceable for
any i and j, it is called enforceable with respect to all pairwise hyperplanes.

Obviously, enforceability with respect to all regular hyperplanes implies
enforceability with respect to all pairwise hyperplanes. The converse is only
slightly less transparent.

LemMA 5.3: A profile is enforceable (strongly enforceable) with respect to all
regular hyperplanes if and only if it is enforceable (strongly enforceable) with
respect to all pairwise hyperplanes.

Proor: It is clear that enforceability with respect to all regular hyperplanes
implies enforceability with respect to all pairwise hyperplanes. To prove the
converse, consider first a regular hyperplane ¥8;v; = ¢ for which the number of
nonzero components of B is even. We may assume without loss of generality
that 8, and B, are nonzero. Then a sufficient condition for £8,w,(y) = c is that
Bw(y)+Bwy)=c, Bswy(y)+B,w(y)=0, and so forth. But this simply
reduces to the solving of the incentive constraints (4.1) on hyperplanes with
coefficients (8,, 8,,0,) 0,...,0,(0,0, B3, 84,0,0,...,0),... . (Recall that translat-
ing a hyperplane preserves enforceability.)

Thus, the lemma is proved if there is an even number of nonzero components
of B, and if there is an odd number it suffices to consider the case in which
there are three nonzero components. In this case we can separately solve the
following two equations: Bw(y) + (8,/2wi(y) =c and (B,/2wi(y) +
Bwi(y)=0. If we now let wy(y)=(1/2Xwy(y)+w3(y)), the continuation
payoffs {w(y)} lie in the desired hyperplane, and, moreover, satisfy the con-
straints (4.1), since they are convex combinations of payoffs that satisfy (4.1).

Q.E.D.

We now examine when profile « is enforceable with respect to all ij-pairwise
hyperplanes for a given pair of players i and j. The requirement that continua-
tion payoffs lie in hyperplane Bw; + 8;w;=c (so that B, =0 for all k& {i,jh
amounts to imposing an “exchange rate” of B,/B; between player i’s and J’s
continuation payoffs. Thus it is as though utility were transferable between the
players. Following this analogy, we can think of an “aggregate” player who can
choose from either player i’s or j’s action set, and so faces the union of their
incentive constraints. To apply the individual full rank condition to this aggre-
gate player, we construct an (m; + m;) X m matrix by “stacking” II {a_,;)on top
of I {a_j). Call this matrix I1;(a):

H(a_;
Hij(a) = (Hl-iav; )
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Matrix H,-j(a) has a linear dependence among its rows. This is clearly seen
when « is the profile where each player plays his first pure strategy, in which
case the first rows of II(«_;) and II(«_;) are the same. More generally,

m(la)= ¥ ela)m(-laja_)= ¥ ea)m(-laja_;).

a,€A; a;€A;

In view of this linear dependence, II, () has rank at most m; +m; — 1. When
the maximum is attained, we say that « has pairwise full rank:

DerNITION 5.4: Profile « has pairwise full rank for players i and j if the
matrix IT; () has rank m; + m; — 1.

13

Note that this is a considerably weaker condition than “n-wise full rank,”
which requires that the distributions corresponding to all n players’ actions
have maximal rank. When this stronger condition is satisfied, the incentive
constraints (4.1) can be solved with equality in any regular hyperplane. Observe,
however, that n-wise full rank demands at least ¥,m,— 1 public outcomes,
which can be a good many more than max, {m,+m;—1}.

Lemma 5.4: If a profile has pairwise full rank for players i and j, then it is
strongly enforceable with respect to all ij-pairwise hyperplanes.

Proor: We must show that pairwise full rank implies that, for any constant ¢
and nonzero B; and B, there exist v;, v;, w,(+), and wj(') such that, for all a; and

a,

(5.1) v=(1-8)g(a,a_)+8Ym(yla, a_)w(y),
y

y;=(1-8)g(a;a_) +8 . m(yla,a_;)wi(y),

and, for all y,
(5.2) wi(y) +Bw;(y) =c.

We can eliminate (5.2) by solving for w(y) (which we can do since B; = 0).
Formulae (5.1) must hold in particular when a; and a; are replaced by «; and
a;. Therefore,

v=(1-8)g;(a) +dm(yla)w(y)

y

=(1-6)gi(a)— [Bi(Ui_ (1 —6)g,-(a)) "66]/131"
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Hence, for any choice of v;, (5.1)-(5.2) can be rewritten as

(5.3) Yr(yvlas,a_Jwi(y)=(v,— (1-8)g(a;,a;))/s, a; €A,

(54)  La(yla;,a_)wl(y)

1 (1-06 {la)—gla,,a_;
- o -a)sw -2 ) e B) 8(a2)

b
ajeAj.

Now, multiply (5.3) by ,(a,) and sum over a;. Subtract from this total the sum
over a; of (5.4) multiplied by « J(a;). The result is zero. Hence, although
formulae (5.3) and (5.4) comprise m; +m; equations, their rank is only m; +
m; — 1, and so the full rank hypothesis enables us to solve for {w(y). QED.

Pairwise full rank is actually the conjunction of two weaker conditions. First,
it obviously implies individual full rank. Second, it ensures that deviations by
players i and j are distinct in the sense that they induce different probability
distributions over public outcomes. The first condition implies that incentives
can be designed to induce a player to choose a given action; the second that
player i’s incentives can be designed without interfering with those of player j.
This flexibility in incentive design is precisely what is required by enforceability
with respect to regular hyperplanes. However, the two conditions are by no
means necessary for such enforceability. In particular, we shall see in Sections
7-9 that there are prominent examples in which versions of the Folk Theorem
obtain even when individual full rank is violated. The fact that individual full
rank is not in general necessary motivates Lemma 5.5 below.

DEerINITION 5.5: Profile a is pairwise-identifiable for players i and j if the
rank of matrix /I, (a) equals rank (ITa_;)) + rank(II(a_})) — 1.

Pairwise-identifiability—the second implication of pairwise full rank
above—implies that the distributions induced by linear combinations of player
j’s deviations are distinct from those induced by combinations of player i’s
deviations. Pairwise full rank is just pairwise-identifiability plus individual full
rank.

LeEmmMma 5.5: If a pure-action profile is enforceable and pairwise-identifiable for
all pairs of players, then it is enforceable with respect to all regular hyperplanes.

HeurisTic Proor: Without individual full rank, a player may have different
actions that lead to the same probability distribution over public outcomes. If
profile a is enforceable, however, then an action a) # a, lea'ding to the same
distribution over public outcomes as a; does not increase player i’s payoff and
hence can be ignored. The idea of the proof is to show that when ignored
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actions are deleted, the matrix II;; corresponding to the remaining actions
satisfies pairwise full rank, that is, it has rank equal to the number of rows
minus one. Continuation payoffs chosen to ensure exact indifference among the
remaining actions will then also deter deviations to the deleted ones. The

details may be found in Appendix 2. Q.E.D.

REMARK: Notice that by replacing the individual full rank condition with
enforceability we can no longer ensure strong enforceability on regular hyper-
planes.

THEOREM 5.1: If a profile a has pairwise full rank for every pair of players, or
if it is an enforceable pure-action profile that is pairwise-identifiable for every pair
of players, then a is enforceable with respect to all regular hyperplanes.

In the partnership games of Section 3, each player has two actions, and so
pairwise full rank demands that there be at least 2 + 2 — 1 = 3 public outcomes.
Thus, no profile has pairwise full rank in the two-outcome game, which implies
that profiles in which both players work with positive probability cannot be
enforced with respect to hyperplanes with negative slope. As we observed in
Section 3, this means that, in a repeated-game equilibrium, either both players
are “rewarded” or they are both “punished” in response to a public outcome.
In contrast, generic profiles have pairwise full rank in the three-outcome game
and, consequently, they are enforceable with respect to any regular hyperplane.

6. THE FOLK THEOREM

In this section we apply the identifiability conditions from Section 5 together
with the results about decomposability on tangent hyperplanes from Section 4 to
obtain analogs of the Folk Theorem. A point v on the boundary of a smooth set
W can be decomposed according to Definition 4.4 provided that the tangent
hyperplane P. to W at v is regular and there exists a profile « for which g(a) is
separated from W by P, and which satisfies suitable identifiability hypotheses
such as pairwise full rank (or the conjunction of pairwise-identifiability and
enforceability). If P, is not regular, then, for some i, v either maximizes or
minimizes player i’s payoff on the set W. In the former case, v is decomposable
with respect to a translate of P, and profile a' such that a’ € argmax, g,(a). If
v minimizes player i’s payoff on W, finding a suitable profile « that is
enforceable with respect to (a translate of) P, may be more difficult. If the
points in W Pareto-dominate the payoffs from a static Nash equilibrium «¢,
then we can simply take o =a¥, since a® is enforceable with respect to any
hyperplane. That is why we establish a ‘“Nash-threat” version of the Folk
Theorem (Theorem 6.1). The stronger “minimax-threat” version requires an
additional assumption (see Condition 6.3 below) to ensure that there exists o
that is both (i) near a profile which minimaxes player i’s payoff, and (ii)

enforceable with respect to P,.
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For the Nash-threat Folk Theorem, either of two hypotheses (Condition 6.1
or 6.2) suffices.

ConpiTioN 6.1: Every pure-action, Pareto-efficient profile is pairwise-identifia-
ble for all pairs of players.

The next lemma shows that all Pareto-efficient profiles are enforceable.
Hence, when Condition 6.1 holds, pure-action, Pareto-efficient profiles are
enforceable with respect to all regular hyperplanes.

LEMMA 6.1: Any Pareto-efficient profile is enforceable.

Proor: If a is Pareto efficient and v = g(a), then (because action spaces are
finite) there are positive weights {A,} such that v solves max ., XA,v;. For all i,
set

wi(y) = [(1 “5)/5] ) [)‘j/)\i]rj(ap)’)-

j#i
Then for any «;

(6.1) (1-8)g(a},a_;) +8 . m(yla}, a_)w,(y)

=[(1=-8)/A] A8 a
A=)/ E T ym(la as)r(ey)

j*iyeyY

=[(1=8)/A] X Asgi(aisay).
i=1
Because g(a)=uv, a solves maxXA,g(a’), and thus, for all i, a; solves
max LA;g(a},a_,). Therefore «;=a; maximizes (6.1), implying that & is en-
forceable with respect to {w,(y)}. Q.E.D.

RemaRrk: This is the only preliminary result that invokes the assumption that
a player’s payoff depends just on his own action and the public outcome:
r,=r(a,, y). Hence, our versions of the Folk Theorem that do not rely on this
lemma (see Theorem 6.4 and the parts of Theorems 6.2 and 6.3 that invoke
Condition 6.2) hold for the more general case in which r; =r(a, y).

In Section 7 we show that pure-action profiles are pairwise-identifiable for all
pairs of players in any game having a “product structure,” and Sections 8 and 9
provide some prominent examples. Nevertheless, there are many games of
interest in which not all pure-action profiles are pairwise-identifiable. Specifi-
cally, in symmetric games for which the distribution over public outcomes is
invariant to permutations of the components of an action profile, any profile in
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which all players use the same action cannot be pairwise-identifiable. Such
games include the Green and Porter (1984) oligopoly model and the Radner
(1986) partnership model.?! Accordingly, we provide an alternative condition
that is satisfied by many of these games.

ConpitioN 6.2: For all pairs i, j, there exists a profile a that has pairwise full
rank for that pair.

Condition 6.2 is satisfied by generic games in which the number of public
outcomes exceeds max; ;{m;+m;—1}.** Note that the condition is much
weaker than the requirement that all profiles have pairwise full rank. Indeed, in
the oligopoly and partnership games of the preceding paragraph (and in the
example of footnote 21) profiles in which all players use the same action are not
even pairwise-identifiable and so a fortiori do not have pairwise full rank.
Nevertheless, such games may well have asymmetric profiles with pairwise full
rank, as we shall see below. This explains why the Folk Theorem applies to
these games, but the set of payoffs for symmetric equilibria is bounded away
from efficiency.

Condition 6.2 permits a different profile « for each pair of players i and j;
superficially, it does not impose the stronger requirement that a single profile
have pairwise full rank for all pairs. However, the condition implies that this
stronger property holds for an open and dense set of profiles.

LemMA 6.2: If Condition 6.2 holds, then there exists an open and dense set of
profiles each of which has pairwise full rank for all pairs of players.

Proor: Fix a profile o' and a pair of players i #j, and let «'/ be a profile
having pairwise full rank for i and j. For each x<[0,1], define a(x) by
a,(x)=(1 -x)a} +xaj for all k. Then, the determinant of any m; +m;~ 1
square submatrix of IT;,(a(x)) is a polynomial in x, and since I1,;(a(1)) = IT, (o)
has full rank, there exists such a submatrix of I1,(a(1)) whose determinant is
not zero. Now, any polynomial is either identically zero or else equals zero only
on a finite set. Thus the determinant of the corresponding submatrix of
IT; (a(x)) is nonzero for almost all x, and since there is only a finite number of

2! For another example, suppose that we symmetrize the second partnership game in Section 3 so
that if one player works and the other shirks, the probabilities of public outcomes 12, 8, and 0 are 3,
0, and %, respectively, regardless of the players’ identities (the model is otherwise unchanged from
before). Then, deviations from the (work, work) profile will give rise to distributions over public
outcomes that do not depend on the identity of the deviator, and so pairwise-identifiability fails.
Note that the invariance entailed here is stronger than that implied by symmetry alone; we are
supposing that permuting actions keeps the distribution on outcomes unchanged. A symmetric game
with observable actions, for example, does not satisfy this invariance condition, since, in that case
the public outcome is the action profile itself.

22 More precisely, suppose that we fix the sets Y and A, and the functions r;: 4, XY > R,
i=1,...,n. Then Condition 6.1 is satisfied for all distributions (- | - ) in an open and dense subset
of the set of all probability distributions on Y.
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submatrices, there exists a sequence of profiles converging to o' all of which
have pairwise full rank for i and j.?

Since (i) o’ was arbitrary and (ii) if IT;}(«) has full rank then, for all profiles
o’ in an open neighborhood of «, I1, j(a’) has full rank, we conclude there is an
open, dense set of profiles having pairwise full rank for i and j. As this is true
for each pair (i, j) and the intersection of open dense sets is open and dense, we
conclude that there is an open dense set of profiles having pairwise full rank for
all pairs (i, j). Q.E.D.

THEOREM 6.1 (Nash-threat Folk Theorem): Suppose that either Condition 6.1
or 6.2 holds. Consider a Nash equilibrium a° of the stage game. Let V9 be the
convex hull of the set consisting of g(a®) and the Pareto-efficient payoff vectors
Pareto-dominating g(a®). Let W be a smooth set in the interior of V'°. Then there
exists 8 < 1 such that, for all 5 > 8, W C E(6).

Proor: Thanks to Theorem 4.1, it suffices to show that W is decomposable
on tangent hyperplanes. Consider v on the boundary of W, and let P, be the
hyperplane tangent to W at v. Suppose first that P, is orthogonal to the ith
axis. Then v either maximizes or minimizes player i’s payoff on the set W.
Lemmas 5.2 and 6.1 imply that, in the former case, a’ (an extremal profile that
maximizes player i’s payoff on A) is enforceable with respect to P, and that, in
the latter case, the same is true of a®. Moreover in either case the profile in
guestion is separated from W by P,. (In the latter case this is so because v
Pareto-dominates g(a®).)

Next, suppose that P, is a regular hyperplane. Assume first that Condition 6.1
holds. Because W is contained in the convex hall of the set comprising g(a®)
and the Pareto-optimal points, there exists profile a, with g(a) separated from
W by P, such that either (a) « is a pure action Pareto optimum or b)a=a‘.In
case (a), Lemma 6.1 and Theorem 5.1 imply that « is enforceable with respect
to P,, and part (iii) of Lemma 5.2 implies the same thing in case (b). Hence, W
is indeed decomposable on tangent hyperplanes in this case. If instead Condi-
tion 6.2 holds, then Lemma 6.2 and Theorem 5.1 ensure that there exists a such
that g(a) is separated from W by P, and « is enforceable with respect to P,.

Q.E.D.

To obtain the minimax version of the Folk Theorem, we require, in addition
to the hypotheses of Theorem 6.1, that all pure-action profiles have individual
full rank. We use this assumption to show that the minimax profile against each
player i can be approximated by an enforceable profile « that has the best-
response property for player i. (This enables us to conclude that « is enforce-
able with respect to a hyperplane that is orthogonal with respect to the ith axis.)

2 We thank Andreu Mas-Colell for suggesting this argument using polynomials.
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ConDITION 6.3: Any pure action profile has individual full rank.

LEMMA 6.3: Suppose that Condition 6.3 holds. Then, for any € >0 and any i,
there exists an enforceable profile « having the best response property for i and
such that 1g(a) — v;| < e, where v, is player i’s minimax payoff.

Proor: For each a; € 4, let C(a;) be the set of a_, €A _; such that (a;, a_;)
has individual full rank for every player j #i. By Condition 6.3 C(a,) is not
empty; by an argument essentially the same as that in Lemma 6.1, it follows that
C(a,) is open and dense in 4_;. Consequently C =, ¢ 4C(a;) is also open
and dense in A4 _,.

Now choose a minimax profile a’ against player i. We can find a sequence
{a* J;_, converging to a’ ; with a*, € C for all k, since C is dense in 4 _;. Let
a* be a best response to a* ;. By definition of C, it follows that (a%, a*,) has
individual full rank for every player j+#i. Choose @, and a subsequence of
{(a*,a* )} such that a¥=a; for all k. Since a*,—>a’, a; is also a best
response to g_i_i, and so gi(ai,gi_i) =y,. Consequently, for any ¢ > 0, we can
choose k so that |g,(a;,a*;) — v;| <e. Because (a,,a*,) has the best response
property for i and individual full rank for j # i, it is enforceable. Q.E.D.

ReEMARK: Notice that Condition 6.3 is used only to show that C(a,) is
nonempty for each a,, that is, for every a; € 4, there exists a_; €A _; such that
(a;, @_;) has individual full rank for all j # i. This weaker condition may be used
in place of Condition 6.3. Indeed inspection of the proof shows that an even
weaker condition suffices: instead of every a; € A;, we may restrict attention to
any subset A4; C A4, for which there exists a minimax profile @', such that if g, is
a best response to a' ;, a; € A}

THeEOREM 6.2 (Folk Theorem): Suppose that Condition 6.3 and either Condi-
tion 6.1 or 6.2 hold. Let W be a smooth subset in the interior of V*. Then there
exists 8 < 1 such that, for all 8 > 8, W C E(8).*

Proor: The proof is the same as that for Theorem 6.1 except that now, if v
minimizes player i’s payoff on W, we invoke Lemma 6.3 to conclude that there
exists an enforceable profile a having the best-response property for i and for
which g,(a) is near enough y; to ensure that g(a) is separated from W by P..
Hence, because P, is orthogonal to the ith axis, « is enforceable with respect to
P. Q.E.D.

v

2 In view of the remark following Lemma 6.1, this result extends to the more general case in
which a player’s payoff may depend on others’ actions as well as his own, provided that Condition
6.2 holds. In the proof of Theorem 6.1, we required Lemma 6.1 (and hence the hypothesis that 7,
depends only on a;) in order to conclude that a' is enforceable. In the proof of Theorem 6.2,
however, we can invoke Condition 6.3 and Lemma 5.1 to establish a*’s enforceability.
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Consider the partnership examples from Section 3. We saw in that section
that the two-outcome version has too few public outcomes relative to the size of
the players’ action sets for any action profile to satisfy pairwise full rank.
(Indeed, profiles fail even to be pairwise identifiable.) This feature—which also
pertains to the example in Radner, Myerson, and Maskin (1986)—helps explain
why repeated game equilibria are bounded away from efficiency in this model.

In contrast, we saw that, in the three-outcome version, the profile (work, work)
has pairwise full rank, and so Condition 6.2 holds. Moreover, it is easy to verify
that Condition 6.3 is satisfied as well, and so Theorem 6.2 also applies to this
game.

In this latter partnership example, continuation payoffs in the repeated game
provide the incentives that induce partners to work. If, however, transfers of
utility between partners are possible, we can reinterpret the continuation
payoffs as such transfers in the static (one-shot) version of the game.” More
specifically, consider functions y;:Y —» R, i=1,...,n, where u,(y) is a transfer
of utility to player i contingent on public outcome y. Then, if trans-
fers {u,(-)}"., are made and the public outcome is y, player i’s total
payoff is r(a,;, y)+ u(y). We say that the transfers {u,(-)}_, are balanced if
Y uy)=0for all y.

THeEOREM 6.3 (One-shot Folk Theorem): If a game satisfies Condition 6.1,
then, for any pure-action Pareto-efficient profile a, there exist balanced transfers
{w, (- W, for which a is a Nash equilibrium in the one-shot game with transfers. If
instead the game satisfies Condition 6.2, then the same conclusion pertain to all
profiles « in an open and dense set.*®

Proor: Finding balanced transfers that induce players to choose the desired
profile is equivalent to showing that this profile is enforceable with respect to
the regular hyperplane {v|Zv, = 0}. Q.E.D.

Just as Theorems 6.1-6.3 apply to generic partnership games, provided that
there are “enough” observable outcomes, they apply as well to the version of
the Green and Porter (1984) oligopoly model discussed in Section 2. (As
typically formulated, the Green-Porter model has a continuum of possible
outcomes.) In their analysis of this model, Abreu, Pearce, and Stacchetti (1986)
concentrated on symmetric equilibria, i.e., those in which all players use the
same strategy. As we noted above, however, symmetric profiles are not pair-
wise-identifiable, and so it turns out that symmetric equilibria are bounded away
from efficiency. Nevertheless, Theorem 6.2 implies that (near) efficiency is
restored once one admits asymmetric equilibria.

% Indeed, as we will see, the analysis is a good deal easier in the one-shot case since perfection
iss%es do not arise.

S This theorem is a generalization of results due to Legros (1988) and Williams and Radner
(1988).
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We can modify the proof of Lemma 5.4 to obtain a sharper version of
Theorem 6.2 for some games. Call a perfect public equilibrium strict if each
player strictly prefers his equilibrium strategy to any other strategy.

THEOREM 6.4: Suppose that every pure action profile a has pairwise full rank
for all pairs of players and that w(yla) >0 for all y. Assume also that, for each
player, there is a minimax profile in pure actions. Then, for every smooth set Win
the interior of V* there exists 8 <1 such that for all 8>3, each point in W
corresponds to a strict perfect public equilibrium with discount factor o.

Remark: Even if all minimax profiles entail mixed actions, we can obtain as
strict equilibria all interior, feasible payoff-vectors that Pareto-dominate
(vy,...,u,), where v, =min,_max, g(a;,a_;), as long as the other hypotheses
of Theorem 6.4 hold.

PROOF: At any pure action profile, the inequalities (4.1) can be solved to hold
strictly for any deviation. When all outcomes have positive probability, any
deviant strategy then induces a strict decrease in payoff if the continuation
payoffs are as specified. Q.E.D.

In finite games, strict Nash equilibria (those for which any unilateral deviation
leaves the deviator strictly worse off) are stable as singleton sets in the sense of
Kohlberg-Mertens (1986). Although there is not yet an established definition of
stability for infinite-horizon games, it seems likely that strict equilibria would
satisfy any such concept. Thus, Theorem 6.4 casts doubt on conjectures that
stability might restrict the force of the Folk Theorem. Moreover, strict equilibria
are robust to small changes in the information structure of the game.

To obtain strict equilibria requires both that players do not randomize and
that any finite sequence of public outcomes occurs with positive probability in
equilibrium. The two requirements are clearly inconsistent in repeated games
with observable actions, where outcomes are the same as actions. However, in
such games we can solve (4.1) with exact equality for all actions, and thus induce
players to play all their actions with positive probability in every period. We
conclude that in such games every feasible, interior, individually rational payoff
vector can be attained by a totally mixed equilibrium. This observation may be
pertinent because totally mixed equilibria, like strict ones, are stable in finite
games. (However, it is less clear whether totally mixed equilibria will satisfy
natural extensions of stability to infinite-horizon games.)

Theorems 6.1, 6.2, and 6.4 apply only to interior points and so do not pertain
to payoffs on the efficient frontier. This contrasts with the standard Folk
Theorem for observable actions, in which efficient payoffs can be exactly
attained. The following result, related to a finding of Madrigale (1986), explains
why imperfect information can preclude exact efficiency.
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THEOREM 6.5: Let v be an extremal payoff vector of V. If for each pure action
profile a with g(a) = v there exist player i and action a, such that g(a, a _ ) >ga)
and support w(-|d,a_;) Csupport (- |a), then v & E(8) for all 6 <1.

ReMark: The hypothesis on supports is clearly satisfied if the support of
w(- a) is independent of a. When the hypothesis fails, player i may be
deterred from playing a) by continuation payoffs that are very low outside
support of (-1a).?’

ProoOF: Because v is extremal, the only sequence of feasible vectors with
average value v is the sequence in which v is repeated each period. Consider an
equilibrium giving rise to this sequence. Then the first period strategies must
specify a profile @ with g(a)=v, and the continuation payoffs {w(y)} must
satisfy w(y)=v for all y € support 7(- |a). Since g(a;,a_)>gla), and sup-
port (- |}, a _,) C support (- |a), player i prefers a; to a,. Q.E.D.

As we noted in the introduction, our methods in this paper differ markedly
from those of Radner (1985), Rubinstein (1979), and Rubinstein and Yaari
(1983). These authors studied principal-agent relationships in which the agent’s
actions are not directly observed by the principal. They showed that, when the
discount factor is near enough 1, it is possible to choose a “review phase”
consisting of a certain number of periods of play such that (i) if the agent
conforms to efficient play throughout the phase, the “average” publicly observ-
able outcome will be within a given tolerance level of a specified target with very
high probability, and (ii) if the agent deviates from efficient play throughout the
phase, the average outcome will be outside the tolerance level with high
probability.

When there is zero discounting, there exists an equilibrium where the agent
plays efficiently in every period for fear that if he did not, the average outcome
would fall outside the tolerance level, in which case play would revert to a
one-shot Nash equilibrium thereafter. When there is positive discounting, there
no longer exists an equilibrium in which the agent plays efficiently in every
period of the review phase. Nonetheless, Radner (1985) established that, when
the discount factor is sufficiently high, there exists an equilibrium in which the
agent plays efficiently in a high fraction of periods. Radner’s proof did not
explicitly construct the players’ equilibrium strategies, which may be quite
complicated; the techniques we sketched following Lemma 4.2 are one way to
derive them.

There appear to be two stumbling blocks to applying the Radner-Rubinstein-
Yaari techniques to the more general class of games considered in this paper.
First, it is not clear how to handle the case in which there are several. players
whose actions are imperfectly observed. When there is only one such player, the

27If the support of (- |a) is independent of a, then an efficient repeated-game equilibrium in a
two-player game is strongly renegotiation-proof in the sense of Farrell and Maskin (1989).
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review phase can be constructed so that that player does not “cheat” very much
when the discount factor is high. But this construction does not seem to extend
readily. Indeed, we know from examples as in Radner, Myerson, and Maskin
(1986) that, with more than one imperfectly observed player, the construction
cannot be extended without additional hypotheses (such as our identifiability
conditions). But it is not apparent how to make use of these conditions within
the Rubinstein-Radner-Yaari framework.

Second, it is not evident how to handle punishments other than reversion to a
one-shot equilibrium using the Radner-Rubinstein-Yaari approach. Getting
players to minimax a given player in the absence of a common punishment, for
example, may be problematic.

7. GAMES WITH A PRODUCT STRUCTURE

Condition 6.2 in Theorems 6.1-6.4 required a profile with pairwise full rank
for all pairs of players. Radner (1985), however, demonstrated the existence of
(nearly) efficient equilibria in repeated principal-agent games without the need
for even individual full rank. (Refer also to the principal-agent model in Section
3.) Such games have a special feature that can take the place of full-rank
conditions: The distribution over public outcomes has a “product structure,”
meaning that the outcome y is a vector (y,,..., y,), in which the components
are statistically independent and the distribution of each component y; depends
only on the actions of player i. Theorem 7.1 below shows that this feature is
sufficient for the Nash-threat Folk Theorem.

We first demonstrate that in games with a product structure, pure-action
profiles always satisfy pairwise identifiability. This means that Condition 6.1
holds, and so Theorem 6.1 obtains.

DEerINITION 7.1: A game has a product structure if we can write each public
outcome y as y =(y,,...,y,), where, for all i and a = («,, @_;), the marginal
distribution of y;, m,(y;la), satisfies

m(yila) =m(yla;,a_;) forally and o’

(7.1) m(yle) = i‘[lm(yim) for all y.

The first half of (7.1) says that the marginal distribution of y;, depends on «;
alone, and the second that the joint distribution over y is the product of the
marginals (that is, the ys are independent given «). When the game has a
product structure, one might expect that an enforceable profile should be
enforceable with respect to continuation payoffs in which player i’s continuation
payoff w(y) depends only on y;,.
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LemMa 7.1: If the game has a product structure, then every pure-action profile
is pairwise-identifiable for all pairs of players.

IpEA OF PrOOF: Since pairwise-identifiability means that deviations by one
player can be distinguished statistically from deviations by another, the fact that
y; contains all information about i’s play and y; about j’s makes this fairly
intuitive. A formal proof is provided in Appendix 3. ' Q.E.D.

TueoreM 7.1: In a game with a product structure, let W be a smooth set in the
interior of V° (see Theorem 6.1). Then there exists a discount factor 8§ such that,
for all 5> 8, W C E(8).

Proor: From Lemma 6.1 Pareto-efficient profiles are enforceable. From
Lemma 7.1, any pure action profile is pairwise-identifiable for all pairs of
players. Hence, the result follows from Theorem 6.1. Q.E.D.

One example of a game with a product structure is the principal-agent model
considered by Radner (1985), in which the principal’s only action is to propose a
(publicly-observed) output-contingent transfer-payment function, and the proba-
bility distribution of each period’s output depends only on the agent’s effort. (In
this case a public outcome is a pair consisting of the transfer-payment function
and output; the former depends only on the principal, the latter only on the
agent.) Radner showed that when the discount factor is sufficiently near 1 there
exist (nearly) efficient repeated game equilibria that Pareto-dominate a static
equilibrium. Theorem 7.1 extends Radner’s results to a general specification of
the payoff functions (for example, unlike in Radner (1985), the principal can be
risk-averse, and the agent’s utility function need not be separable in effort and
income). Section 9 extends the conclusion of Theorem 7.1 to games in which 6))
the principal can, in addition to making transfers, influence the distribution of
output, and (ii) there are multiple agents.

8. ADVERSE SELECTION

We next apply Theorem 7.1 to a class of games of adverse selection. We then
observe that this class includes standard mechanism-design problems.

Consider the following class of games. Each player i first receives private
information determining his type z, € Z,, where Z; is finite. The distribution of
types is independent across players, and player i’s type has distribution 7,
which is common knowledge. After learning their types, players move simulta-
neously, and player i’s move, y; € Y}, is publicly observable. The public outcome
isy=(y,....,y)EY=Y; X -+ XY,

A (pure) action for player i is a mapping a; from Z, to Y. If we suppose that
player i’s realized payoff 7(z;, y) depends on the public outcome and his own
type but not on others’ types (i.e., the case of private values), we can express his
ex ante payoff function over actions and outcomes (which pertains before he
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learns his type) as

r{a;,y)= Z Pz y)Bi(2)) Z ﬁi(zi)~28

zi€a ) z;€a7 ()

Note that the distribution of outcomes corresponding to action profile a is

m(yla) = I Ilﬂ'i(yiiai)’
ie
where

Y #(z), ifa;7'(y;) is nonempty,
Wi(yi|ai) = z;€a;7'(y)
0, otherwise.

Thus player i’s ex ante expected utility from the profile a is

gi(a) = Z”T(Yla)"i(ai’y)~

It is clear that the game has a product structure in the sense of Definition 7.1.
In the repeated version of the game, player i’s types are drawn independently in
each period from the fixed distribution 7, A player observes the public
outcome y each period but not others’ types.

Notice that these games do not satisfy the individual full rank condition, and
a fortiori fail the stronger condition of pairwise full rank: Let zj and z] satisfy
#(z)) > #(z}), and fix a pure action a; with a,(z}) =y}, a(z})=y]. This
action yields the same distribution over outcomes as (mixed) action &,, where
&(z))=y!, and &,(z}) takes on the value y; with probability m(z})/m(z}),
and y| with probability (7(z}) — 7 (21))/m (z}). This lack of full rank means
that many action profiles cannot be enforced. Nevertheless, because the game
has a product structure, Theorem 7.1 applies, and so the Nash-threat version of
the Folk Theorem obtains.

Examples of games in this class include social-choice mechanisms under
adverse selection. In the repeated version, player i’s move y; in period ¢ is a
report a,(z;) (not necessarily truthful) of his period ¢ type z;, that is, ¥ is
isomorphic to Z. Let S be a finite set of social alternatives and fix a social
choice function f:Z —S. Consider the mechanism g in which, when the
reported profile of types is y, the social alternative selected is f(y), so that
player i’s payoff is 7(z;, y) =u,(f(y), z;). We say that the repeated version of g
implements f if there exists a PPE in which the expected discounted average
payoffs are g(a*), where a* =(a¥,...,a}) is the “truthful reporting” profile
(i.e., for all i and z;, af(z;) =2z).

One such repeated adverse-selection problem has been considered by Green
(1987). The types z, are the players’ (privately observed) endowments, and the

28 Formally, rfa;, y) is not defined for y such that a; !(y;) is empty. However, because such a
public outcome occurs with zero probability, we can define r{a;, y) arbitrarily without affecting the
analysis.
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social choice function f redistributes endowments to provide insurance against
fluctuations. Bewley (1983), and Levine (1991), and Scheinkman and Weiss
(1988) studied the role of money in related models.

TheOREM 8.1: Fix a social choice function f and a Nash equilibrium o° of the
corresponding mechanism g, and suppose that the distribution of types is indepen-
dent across players. Let V° be the set formed by taking the convex hull of g(a®)
and the feasible points that Pareto-dominate it. If V° has a nonempty interior,
then all payoff vectors in V° can be approximated by equilibria of the repeated
mechanism for discount factors close enough to 1. (That is, for v € V° and any ¢
there is a 8 < 1 such that there is an equilibrium payoff within & of v for all 8> 8.)
In particular, if g(a*) Pareto-dominates g(a®), then g (approximately) imple-
ments | for all § sufficiently near 1.

Proor: This follows from Theorem 7.1. Q.E.D.

To help interpret this result, consider a variant of Green’s (1987) insurance
model. Each of two agents, i = 1,2, is endowed with 2 units of a consumption
good, and is subject to a preference shock z;, whose realization can be 2 or 4
equally likely, and which is independently distributed across agents. Agent i’s
utility of consumption is In(z; + ¢,), where the level of consumption c¢; must be
an integer and the sum of consumptions cannot exceed the sum of endowments.
The best symmetric allocation is for agent i to consume his endowment when
the shocks to each agent are the same, and to give up one unit to the other
consumer when z, =4 and shocks differ. Theorem 8.1 implies that the corre-
sponding expected utility In4 + 3In5 + +1n6 can be approximated by a re-
peated game equilibrium when & is near 1. The conclusion is not that risk or
risk aversion per se becomes unimportant when & nears 1. Indeed, the best
symmetric allocation does not approximate the utilities that accrue when each
player is perfectly insured, i.e., when z; +¢; =5 each period. That is, repeated
play does not reduce the social risk corresponding to random preferences.
Rather, it reduces the incentive cost of inducing players to report their types
truthfully.

Just as Theorem 6.3 establishes a one-shot counterpart to the Folk Theorem
in the case of moral hazard where utility transfers take the place of continuation
payoffs in ensuring incentives, we can obtain such a one-shot counterpart in the
case of adverse selection. In our (1993) working paper, we show that generaliza-
tions of many of the results from the transferable-utility mechanism-design
literature can readily be derived using our methods.

9. PRINCIPAL-AGENT MODELS

We next consider the class of games in which at least one player’s actions are
observable. This class includes the standard principal-agent model, which we
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discussed briefly in Sections 3 and 7. We first generalize this model to consider
all two-player games in which one player’s actions are observable.

We say that player 2’s actions are observable if, for all a,, support =(:|a,,
a,) Nsupport w(-|a,,a,) = for a,# a’,. Thus, given player 1’s action, any
observable outcome is consistent with only one action by player 2.

As in Theorem 7.1, we shall be concerned with 1?, the convex hull of the set
consisting of a static equilibrium payoff v¢=g(a®) and the Pareto efficient
points that Pareto-dominate it.

TueoOREM 9.1: In a two-player game in which player 2’s actions are observable,
let W be a smooth set in the interior of V' °. Then there exists § such that, for all
8>8, WCE().

Proor: Because the public outcome reveals player 2’s actions, the continua-
tion payoffs corresponding to deviations by player 2 have probability zero so
long as player 2 never deviates. Consider v on the boundary of W. Inspection of
the proof of Theorem 4.1 reveals that it suffices to show that there exists a
profile a, with g(a) separated from W by the tangent hyperplane P, to W at v,
such that (i) a is enforceable with respect to continuation payoffs {w(y)}, <y
and (ii) w(y) € P, if y € U, support 7(-la;, a,X= v(a,)) and w(y) =v° oth-
erwise. The argument that there exists such a profile is virtually the same as in
the proof of Theorem 6.1. Q.E.D.

A boundary point of V is on the outer boundary with respect to the one-shot
equilibrium payoff vector v if it strictly Pareto-dominates v°. The outer
boundary is downward-sloping if it consists only of (strict) Pareto optima. An
immediate implication of Theorem 9.1 is the following:

CoroLLARY 9.1: If, in addition to the hypothesis of Theorem 9.1, the outer
boundary of V is downward-sloping, then for any vector v in the interior of V*
that Pareto dominates a static Nash equilibrium there exists 8 such that, for all
8> 8, ve E().

To see what can go wrong if the downward-sloping hypothesis in Corollary 9.1
fails, consider the game described in Table 9.1. Player 1 has three (unobserva-
ble) actions, U, M, D, and Player 2 has two observable actions L and R. If
player 2 chooses action R, output (which accrues to Player 2) can either be 5
(high) or 0 (low). If he chooses L, output is always low. If output is high, Player
1’s utility is an increasing function of his effort; if output is low, utility is zero. A
public outcome corresponds to an action by Player 2 and an output level; hence
there are four possible outcomes: (L, high), (L, low), (R, high), (R, low). The
feasible payoffs are illustrated in Figure 9.2.

Notice that there is a static equilibrium (U, L) with expected payoffs (0,0);
these are also the minimax payoffs. Hence, if the line connecting (1,2) and (3, 3)
in Figure 9.2 were downward-sloping, Corollary 9.1 would imply that all convex
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TABLE 9.1
Player 2
L R R
U (0,0) (0,0) 0
(0,0
Player 1 M (0,0) (1,5 H
1,0)
D (0,0) 3,5 H
(3,0

Payoffs (when the entry is divided, the
upper pair refers to high output and
the lower to low output)

L R
0,0) 0,0
©,0) (1,2)
0,0 3,3)

Expected Payoffs

Probability of
High Output

combinations of (0,0), (1,2), and (3,3) could arise in repeated game equilibria.
It can easily be shown, however, that only convex combinations of (0,0) and
(3,3) correspond to equilibria (see Fudenberg and Maskin (1986b) for a demon-

stration).

Corollary 9.1 applies, in particular, to the principal-agent games discussed in
Section 7, and it and Theorem 9.1 clearly extend to games of three or more
players in which the actions of only one player are unobservable. In fact, they
generalize to games in which several players’ actions are unobservable, as long
as the game has a product structure. Formally, we have the following theorem.

TueoreM 9.2: Consider an n-player game in which the actions of only players
I+ 1,...,n are observable. Suppose that we can express each outcome y as
y=(yy-..,y,) where, for i=1,...,1, the distribution of y; depends only on a;

FiGure 9.2

(3,3)
(,2)
Equilibrium
payoffs
(0,0)
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and (a,, ,,...,a,), and w(yla) =T1._ w{y;|a). Then the conclusion of Theorem
9.1 obtains.

10. CONCLUDING REMARKS

Our method of constructing equilibria is based on the dynamic-programming
decomposition of equilibrium payoffs into current payoffs g(a) and continua-
tion payoffs w(y), the point being that if the continuation payoffs are them-
selves in the equilibrium set, and profile a can be enforced by w(-), then the
overall payoff vector (1 —8)g(a) + 8Zm(yla)w(y) corresponds to an equilib-
rium as well. This approach prompts the question of how the equilibrium set
E(8) is related to the profiles that are enforceable with respect to some
continuation payoffs in the feasible set V, whether or not these latter payoffs
themselves correspond to equilibria.

Let C(8) consist of the overall payoff vectors corresponding to such profiles.
(This set could be attained if players could commit themselves in advance to
outcome-contingent continuation payoffs—say, through binding contracts.) Let
N(8) be the set of Nash equilibrium payoffs in the repeated game; Nash
equilibrium requires that, for each y with positive probability under profile a,
w(y) be a Nash equilibrium payoff vector. Since the definition of C(8) imposes
fewer constraints on the continuation payoffs than that of N(8), it is clear that
E(8) € N(8) € C(8). From the study of repeated games with observable actions
we know that for a fixed discount factor & the first inclusion can be strict, and
brief reflection should convince the reader that the second inclusion can be
strict as well.

Let us compare the behavior of these sets as 8 — 1. The first thing to notice is
that if & is too small, many vectors in I may be infeasible, i.e., unattainable by
any profile of repeated game strategies, whereas all points in V' are feasible if
§>1—1/d, where d is the number of vertices of V (Sorin (1986)). This last
result reflects the fact that one effect of repeated play with patient players is to
allow “intertemporally transferable utility” in the interior of V, even if the stage
game itself does not provide much flexibility for utility transfers. A second effect
of repetition is to permit the gain from a one-period deviation to be offset by
variations in continuation payoffs. This is the basis for the Folk Theorem in
repeated games with observable actions.

Let E(1), N(1), and C(1) denote the limiting values of the corresponding sets
as & — 1. (A point is in E(1) if it is in E(8) for all sufficiently large 8.) Theorem
6.2 asserts that E(1) D interior V*; according to its Nash counterpart, N(1) >
interior V*. Clearly, a necessary condition for either result is C(1) D interior V*.
This inclusion obtains if every pure-action profile is enforceable (since we can
then always use an extremal pure-action profile in the first period of a decompo-
sition), and thus if each such profile satisfies individual full rank.

Even when all the pure action profiles are enforceable, the Folk Theorem
may still fail. For example, in repeated games with observable actions, it does
not apply to games of three or more players unless V'* satisfies an interiority
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condition (see footnote 1). And as the Radner, Myerson, and Maskin (1986)
example demonstrates, the Folk Theorem can fail even when C(1) D interior
V* # @, if actions are unobservable: Although individual full rank implies that
any Pareto-efficient profile is enforceable with respect to nearby continuation
payoffs when & is near one, these continuation payoffs may not themselves
correspond to equilibria without the stronger condition of pairwise identifiabil-
ity.

To conclude, let us mention a limitation on the interpretation of our results.
As we have formulated the repeated game, the statistical information conveyed
by outcomes about actions in any given period does not change as the discount
factor tends to 1. This feature is crucial to our versions of the Folk Theorem; as
Kandori (1988) has shown, the equilibrium set contracts as public outcomes
reveal less and less information. Thus, although it would be proper to interpret
& tending to 1 as corresponding to greater patience on the part of players, it
might be misleading—as Abreu, Milgrom, and Pearce (1991) have stressed—to
construe this convergence as a consequence of the time interval between
periods growing shorter. Quite plausibly, the quality of the information revealed
by outcomes is a function of period length: the longer is the period, the more
information accumulates. Indeed, Abreu, Milgrom, and Pearce provide an
example in which the Folk Theorem does not obtain as the time period shrinks
because the informativeness of outcomes decays too quickly.
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APPENDIX 1

THEOREM 4.1: If a smooth set W is decomposable on tangent hyperplanes, then it is locally
self-decomposable.

Proor: It suffices to show that for all v € W there exists § < 1 and an open neighborhood U of
such that each u € UN W is decomposable with respect to some profile «, 8, and a subset of W.

Step 1: Suppose v € interior W. Let a“ be an equilibrium of the stage game, and fix an open set
U containing v whose closure is in the interior of W. Then there is a 8 such that for each u € U
there exists u' € W such that u=(1 —8)g(a®) + 6u'. Because af is a static equilibrium, the
incentive conditions (3.1) are satisfied, and so v is decomposable with respect to «*, 8, and {u'}.

Step 2: Consider v € boundary W. Since W is smooth, there is a unique hyperplane P, tangent
to W at v. We argued in the text that, from decomposability on tangent hyperplanes, there exist
profile a and continuation payoff vectors lying on P, such that g(«) is separated from W by P, and
the continuation payoffs enforce «. Lemma 4.3 then implies that there exists « such that, for any
and any w' € R”, a is enforceable with respect to a translate of P, containing w’, where the
continuation payoffs {w(y)} differ from w’ by at most «(1 —§)/8.
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Step 3: It is now convenient to choose a new coordinate system. As shown in Figure 4.1, we take
v to be the origin, choose the vertical (first) axis to be the line connecting v and g(a), and the
remaining axes to lie in P,. Since g(a) € P, this transformation is possible. In the new coordinates,
W is still smooth and convex. Although the norm is changed, x can be replaced by a new constant
K.

For x € R" we now write x = (x°, x*), where x° is the component on the vertical axis and x ¥
the component in P,.. Because W is smooth, Taylor’s theorem ensures that there exists §* <1,
constant ¢ >0, and a neighborhood X of the origin such that, for all 6 >8*, if x€X, then
lxHli<cy/(1—-6)/8 and x°< ~llg(a)li(1 - 8)/8] imply x € interior W.

In Step 2, let w’ = ((1 - 8)/8)X —llg(a)ll, 0). Then v =(1 - 8)g(a) + 6w’. Now each continuation
payoff vector w(y) has vertical component w( )0 = ~((1 - 8)/8)lig(a)ll. Moreover, because, from
Step 2, Iw(»)ll < «'((1 — 8)/8), w(y) € interior W for all & greater than some 8% (since «'((1 —
8)/8) <cy/(1—8)/8). It remains to show that for all v’ in a neighborhood of v, v" is decompos-
able with respect to a, &, and a subset of W. For any v/, v'=(1 —8)g(a) + 8L m(ylaw'(y), where
w'(y) =w(y) + (v' — v)/8. Notice that for ||v" — vl small enough, w'(y) € int W. Hence, there exist
¢ >0 and 8 such that for all v’ € W with [0’ — v]l <&, v’ has the desired decomposability properties.

APPENDIX 2

LemMa 5.5: If a pure-action profile is enforceable and pairwise-identifiable for all pairs of players,
then it is enforceable with respect to all regular hyperplanes.

Proor: Fix a pure-action profile @, and focus on player i. To simplify notation, for each a; € 4,,
define the vector IT{(a)) = w(- |a;, a _;) and the payoff (a})=g/a},a_). Call g; subordinate to set
A" C A, if the vector IT{d}) can be obtained as a linear combination of vectors corresponding to
actions in A", and this linear combination provides player i with at least the payoff from 4, that is,
if there exist numbers {A(a])}y < 4 such that A(a}) =0, and

(Az.1) 2 A(d)II(a)) = 1T(4})

dleAl

and

(A22) RN CATACAETACHE
aj €A}

Note that the weights A, (&) are not required to be nonnegative, and so may not correspond to a
mixed action. Because the components of each vector I1,(a}) sum to 1, so, from (A2.1), must the
weights sum to 1. Our goal is to reduce Lemma 5.5 to Lemma 5.4 by eliminating rows of H,»i(a)
corresponding to subordinate actions.

We make three claims: (1) If, for some set A7, the vectors {IT(a})}y < .4 are linearly dependent,
then there exists @} € A7 such that a is subordinate to 47. (2) If, moreover, there exists a; € A} that
is both enforceable and subordinate to 47, then it is not the only action subordinate to that set. (In
the text, we discuss enforceability in terms of profiles; here we are abusing terminology slightly by
referring to the enforceability of a component of a profile.) (3) If 4} is subordinate to A% and 4] is
subordinate to A7\ ), then &/ is subordinate to 47\ a;. That is, if an action is subordinate to a set,
it is subordinate to any subset formed by the elimination of subordinate actions.

First we establish (1). If {II,(a} )}a!{e A are dependent, then there exist {A,(a})}, not all zero, such
that T o g2 (a)IT{a]) = 0. Choose a’; with A(a}) # 0. Then

Y [=r@D/Ada) (e = T4
aj e AN,
Note that, since each IT(a}) is an element of the unit simplex, —-A{a)/A(d) >0 for some
4,eAN\d,. If

(A23) D BN AV N CAIFACARSACAL

dje AN,
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then, multiplying both sides by A (a})/A(d;), we get

Z [_/\i(ag)//\i(ﬁi)]ﬁi(ali') > £:(d;)

ai € ANG;
and
Z [ —/\i(a’i’)/)‘(éi)]ni(a’i’) = Hi(éi)’

i.e., d; is subordinate to A}. (Of course, if the inequality (A.2.3) were reversed, then a; would be
subordinate to A7.) This proves claim (1).

For claim (2), suppose that a; is enforceable and subordinate to A}. Then for some weights
{A,(a")} with A (a;) = 0, inequalities (A2.1) and (A2.2) must hold for a} = a,. If (A2.2) holds strictly
and A,(a7) > 0 for all af, then the weights {A,(a")} correspond to a mixed action that yields a higher
payoff than a;, and so a; is not enforceable, a contradiction. Thus, for some 4, € A7\ a;, A,(d;) <0.
Proceeding as above, we find 4; is subordinate to A7\ d;.

On the other hand, if (A2.2) holds with equality, choose d, € A7\ 4, such that A,(d;)#0. We
have

Z [ _’\i(a/z{)/)‘i(ﬁi)]éi(all") =4:(4;).
aj e NG
and so 4, is subordinate to A7}. This establishes the second claim.

Next, we prove (3). Suppose 4] is subordinate to A7 and a7 is subordinate to A7\ «;. Then there
exist weights {X;(a;)} and {X(a,)} such that

(A24) Z Xi(a)l(a;) =11(a}),

N ot
a;,€A\a;

(A25) Y Xi(a)(a) =11(d}).

a;€AN\a;, aj}

Now define A(a;) = X,(a;) + X(aD)X/(a,) for a; #a; and q, # a}; and Afa) =A):,~(a’,-’) = (. Substitut-
ing (A25) for II{a]) in (A2.4) shows that A,(.) satisfies (A2.1):: L, c gAf(a)II(a;)=1I(a).
Similarly, we can verify that it satisfies (A2.2), so 4 is subordinate to A}/a}. This proves claim (3).

It follows from the claims that if a is enforceable we can find a set A’ containing a; such that the
vectors {IT{(a})}, < , are independent and such that for all & € A;\ A}, 4/ is subordinate to A'.
Similarly, we can find a corresponding set A for j. Let IT(a_,) and IT(a _;) be the corresponding
matrices. By pairwise-identifiability and construction, the matrix

i(a_;)

Ti(a_;)
has the same rank as H,-j(a). Lemmas 5.3 and 5.4 imply that for any regular hyperplane we can find
w;(+) and w,(-) consistent with this hyperplane such that

(A2.6) vi=(=-8)(a)+8 Y. m(yldi,a_)w(y) a,€A,
y

and similarly for j. From (A2.6) player i cannot gain by deviating to a; € 4. If a} € A;\ A}, there
exist weights such that

I(a7) = Z A(a)1(a)),

a;eA;

gi(di) < Z A(ay)éi(ay),

ai €A
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and T ¢ 44 (@) = 1. Thus,

U= Z A(a)

a;€A;

=(1-9) Z A(a)g(a)) +8 Z /\i(a'z')zw(y‘“/i’“—i)wi()’)

a; €A, a;€A; y
>(1-6)§(af)+8 Y m(yldi,a_)ywi(y),
y

so that (4.1) is satisfied for all a] € 4;. Q.E.D.

APPENDIX 3

LemmMa 7.1: If a game has a product structure, then every pure-action profile is pairwise-identifiable
for all pairs of players.

Proor: Let a be a pure-action profile and, for some pair (i, j), choose A= {aD),...,a(k)}
and A;={a,(1),...,a,k;)} such that B,={w(-lafs),a_M)ki, is a basis for [I(a_;) and B;=
{7 (- \aj(s),a_j)}s";1 is a basis for IT{a_;). Then, the ranks of Ma_) and II{a_)) are k; and k;
respectively. More specifically, choose A’ to include a;, and A’j to include 4; and index so that
a j(k ,-) =a;. Now, as we observed in Section 5, B; U B; is a linearly dependent set, and in particular
for our choice of a; and a; 7(-|la;,a_)=m(: la;,a _j]). We now finish the proof by showing that the
vectors corresponding to the set A;UA}\a; are linearly independent, that is, that rank H,»,-(a) =
k,+k;—1

Su;;pose not. That is, assume that there exist scalars {(A(s)} and {y(s)}, such that
Lk amlylafls),a_)+ tkinly()m(ylals),a_;}=0forall y. Since B; and B; are each linearly
independent we may assume at least one y(s) and at least one A(s) are nonzero. Because the game
has a product structure, we can integrate out the components of y other than y; and y; to obtain

ki
(A3.1) Y a(s)m(vila(s))m;( vla;)
s=1
k-1
+ Y y(s)m(vila)m;(ylai(s)) =0  forall y;and y;.
s=1

For any y;, and y, such that my;la) >0 and w(y;la;)>0, we may divide (A3.1) by
7 ylam(y;la;) to find

k; k-1
. myilais . mi( yla;(s
(A3.2) Z,\(S)M+ 3 y(s)_(y_(_))=0

s=1 1'r"(y"lai) s=1 Tr/'(yi!af)

Now, if the second sum in (A3.2) depends on y;, we have a contradiction, since the first sum clearly
does not. Assume, therefore, that

k=1

(A3.3) Y v (s)m(y;1a;(5)) =cm( y;la;)

s=1

for all y, such that w(y;la))> 0. Indeed, from (A3.1), we note that (A3.3) holds even for y; such
that {y;la;) = 0 (simply divide (A3.1) by m,(y;la;) # 0). But since the y(s) are not all zero the fact
that (A3.3) holds for all y; contradicts the linear independence of B;. Q.E.D.
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