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1. INTRODUCTION

Although game-theoretic models play an important role in economic
theory, in many cases of interest it is difficult to characterize the set of non-
cooperative equilibria. We provide, as a tool for this purpose, a sufficient
condition for equilibria to arise as the limits of ¢-equilibria in games with
smaller (and more tractable) strategy spaces. We then extend our result to
mixed-strategy equilibria. As illustrations we consider finite-horizon
approximations of infinite-horizon games and discrete-time approximations
of continuous-time games. We considered the first application in Fuden-
berg and Levine [3]; the framework we use here allows a clearer proof and
a weaker continuity requirement.

The idea of the theorem is straightforward: if a sequence of “restricted
games” approximates the game of interest in the appropriate sense then
any convergent sequence of ¢-equilibria of the restricted games with ¢ —0
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as the approximation improves converges to an equilibrium of the original
game, and every equilibrium of the underlying game is a limit of e-
equilibria of the restricted games with ¢ — 0. Thus the set of equilibria can
be characterized by computing the set of limit points of the e-equilibria of
the restricted games. A related issue is the appropriate definition of
equilibrium in games that are defined as limits. For example, it is difficult
to give a general formulation of continuous-time games. Instead, one may
simply define equilibrium as the (abstract) limit of those occurring in
discrete time approximations. However, if the definition is to include
all equilibria of games whose continuous-time limit is well-defined, our
results show that it is necessary to take limits, not only of equilibria, but of
e-equilibria with ¢ - 0.

Section 3 introduces a product topology on the strategies and uses it to
prove a first version of our limit result. Section 4 applies this topology to
finite-horizon approximations of infinite-horizon games, and Section 5
applies it to discrete-time approximations of open-loop equilibria of con-
tinuous-time games with continuous payoffs. Section 6 extends our results
to mixed strategies.

Section 7 explains that the product topology is too restrictive, in that for
some games of interest the only admissible sequence of restricted games is
the original game itself. We are thus led to construct the coarsest topology
for which our limit result obtains, because such a topology admits the
largest possible class of approximating games. Section 8 applies this
topology to games of timing.

2. RELATED WORK

Most discussions of the relationships between the equilibria of various
games have focused on whether limits of equilibria are equilibria of the
limit game, that is, whether the equilibrium correspondence is upper hemi-
continuous. Walker [14] provides general conditions for a family of games
to have this property. Green [5] establishes it for finite player
approximations of games with a continuum of players. A number of
authors have observed that some, but not all, equilibria of continuous-time
games are limits of equilibria of discrete-time games, among them Kreps
and Wilson [8] and Stokey [11]. Dasgupta and Maskin [1] use finite-
action approximations of games with a continuum of actions to investigate
the existence of mixed-strategy equilibrium. Earlier papers by Wald [13]
and Tjoe-Tie [12] demonstrate this for zero-sum games.' All these papers
are concerned with only one direction of our limit theorem.

I We would like to thank Sylvain Sorain for bringing this literature to our attention.
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Radner [9] showed that cooperation could arise as an e-equilibrium of
the finitely repeated Prisoner’s dilemma. As cooperation is an equilibrium
with an infinite horizon, Radner’s result corresponds to the second direc-

tion of our theorem.
Harris [6] extends our earlier work on the finite to infinite-horizon limit.

He introduces two new and more tractable topologies, each of which per-
mits the characterization of infinite-horizon equilibria by finite-horizon
ones if the game is continuous at infinity. One of his topologies is in fact
the finest one for which this result obtains; his other topology is coarser,
and, he argues, is “nearly” the coarsest possible.

3. Basic NOTIONS

We begin by introducing the basic concepts and definitions. Players are
elements i of a finite set /. Each individual player has a strategy space S,.
The overall strategy space is the Cartesian product S = X, S;; elements of S
will be called strategy profiles. Notice that S may be a space of mixed
strategies. The profile derived from S by replacing its ith component by A,
is denoted by (h;,, s _,). Player i's payoff z, is a bounded real valued function
on S.

DEFINITION (3.1). A strategy profile s is an e-equilibrium if for all / and
h,eS;

n(h;, s_;)<n(s)+e

Thus each player gets within ¢ of the maximum. (See, e.g, Radner {9].)
One rationale for e-equilibrium as a solution concept is that if players have
sufficient inertia they will not bother to realize small gains. When ¢ =0 we
refer simply to equilibria: this is a the usual noncooperative Nash
equilibrium. We are not primarily interested in e-equilibria themselves; we
will use them as a tool to characterize the equilibria of S.

We are particularly interested in games in which players are restricted to
a subset of the strategies available to them in S.

DEFINITION (3.2). RS S is a restriction or restricted game if
R = XiEl R, With R,g_: S,'.

If R is a restriction of S we have the notion of an g-equilibrium relative
to R.

DerINITION (3.3). A strategy profile 7€ R is an ¢-equilibrium relative to
R if for all i and h;e R;

nh, r_)<n(r)+e
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Thus each player gets within & of the best he can do within his restricted
strategy space R;.

Let {R"} be a sequence of restricted games and ¢” a sequence converging
to & We will be concerned with the conditions under which the ¢"-
equilibria of R" converge to the ¢-equilibria of S. These conditions of
course depend on the topology of S: each topology will generate conditions
a sequence of restricted games must satisfy for the limit result to obtain.
For example, if we endowed S with the discrete topology, the only suf-
ficiently good approximation of S would be S itself. Coarser topologies on
S allow more approximations.

We will begin with a fairly simple topology on § that we call the
“inherent product” or p-topology. This topology will prove adequate for
finite-horizon approximations of infinite-horizon games, and for finite-
action approximations of games with payoffs continuous in the ordinary
topology. Moreover, the product structure is essential for introducing
mixed strategies. Later, however, we shall see that the p-topology is too
fine to permit discrete-time approximations of discontinuous games of
timing, which will motivate us to introduce an alternative topology that is
the coarsest possible.

We now define the inherent product topology.

DerINITION (3.4). The distance between two strategies of player i, s;,

t;€S;, is
pis;, t;)= sup max |7i(s;, h_))—mnit;, h_)l
h_jeS—_; jel

Thus p(s;, ;) measures the greatest difference it would make to any player
if player i used s, instead of #;. It is easy to check that p, satisfies the
triangle inequality. Thus p; is a pseudometric, and so generates a topology.
Notice that p, may not be a metric, because it is possible that p.(s;, t;)=0
yet s; #t;. If p; is not a metric, the topology it generates does not separate
points.?

Remark. For a two-person zero-sum game p(s;, t;) reduces to

sup |m(s; h_;)—m(t, h_)l

h_jeS_;
This is Wald’s [13] “intrinsic distance.”

DEFINITION (3.5). The inherent product topology on S is the product
topology induced when each of the S; is topologized by p;.

2 While the term topology is used correctly here, most topologies with which economists
are familiar do separate points. Topologies which do not have unfamiliar properties such as

many limit points for a convergent sequence.
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Until Section 7, all statements about convergence, continuity, etc., will
be with respect to the inherent product topology, unless otherwise noted.
This topology is generated by the pseudometric p(s, 1) =27_; pdSi t:):

PROPOSITION (3.1). If s is an &-equilibrium then t is an [&+ 2p(s, 11-
equilibrium. Thus if s" — s are a sequence of &"-equilibria and " — ¢, then s is
an c-equilibrium, and if s" — s and s is an e-equilibrium then the s" are &"-
equilibria with ¢" — &.

Proof. Suppose s is an e-equilibrium. Then unravelling the definitions,

iups nhi, t_))—mlt) < iup nh;, t_)—mAs)+ p(s, t)
ihie S; i,hie S;

< sup wi(h;, S-i)—ﬂi(s)"'zp(s’ t)

ihie Si

<e+2p(s, t) Q.E.D.

DErFINITION (3.6). The sequence of restricted games {R"} approximates
S if for every subsequence {R™}, 7., R™ is dense in S, or equivalently if
for every se S and subsequence {R™} there is a sequence contained in
R™, r* which converges to s.

We now state and prove the first version of our main theorem which
relates the ¢"-equilibria of an approximating sequence of restricted games
to the e-equilibria of the unrestricted game.

ProposITION (3.2) (Limit Theorem). Suppose {R"} approximates S and
r"e R".

(A) If the r" are &"-equilibria relative to R" with ¢" = ¢ and r" — s then
s is an g-equilibrium.

(B) If s is an e-equilibrium and r" — s then there is a sequence €" — ¢
such that the r" are £"-equilibria relative to R".

COROLLARY (3.3). If s is an e-equilibrium there exists sequences {r},
reR", and {&"}, with r"—s and ¢" —¢ such that r" is an g"-equilibrium

relative to R".

Proof.

(A) Vh;eS,, nfh;, s_;)—nls) < nh, r)—w{r')+ 2p(s, r").
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Since {R"} approximates S, h7’e R? such that p/(h}, h;)—0. Since
nhy, rm ) —ndh;, ) < p(hi, hy),

nh;, s_;)—ni(s) <mh?, rm ) — = (r") + 2p(s, r") + pA ], h)
<e"+2p(s, r")+pAh?, h))— e

(B) Since R"< S this follows from Proposition (3.1).

Finally, the corollary follows from the obsevation that since {R"}
approximates S, there is some sequence of r” — s, and applying (B). Q.E.D.

In some cases the actual equilibrium strategies are of less interest than
the equilibrium payoffs. '

COROLLARY (3.4). If {R"} approximates S, {v"} —v is a sequence of
payoffs (one for each player) of e"-equilibrium relative to R", with &" — ¢, and
S is compact, then there is an ¢-equilibrium in S with payoffs v.

Proof. Take a convergent subsequence of the ¢”-equilibria and apply
Proposition (3.2).

Remark. Let N be the topological space consisting of the positive
integers and + oo with the metric n(n, m)=|(1/n) —(1/m)| (and 1/00 =0).
Fix a sequence R" which approximates S and set R*=S. Define the
correspondence Q: [0, 0)x N 3 S to yield for any (¢ n) the set of e-
equilibria relative to R". Proposition (3.2A) says that £ is closed valued at
(¢, 00) for every . As S is not necessarily compact, we cannot conclude that
Q is upper hemi-continuous. Green [5] gives conditions for upper hemi-
continuity in a setting similar to ours. In addition the closed valuedness of
Q may be inferred directly from Walker’'s [14] generalization of the
maximum theorem. We may view e-equilibrium as an equilibrium relative
to intransitive preferences, and these are clearly continuous with respect to
¢. Since the mapping from N to the subsets of S is lower hemi-continuous
at oo relative to the Hausdorfl topology on subsets of S, Proposition (3.2A)
follows directly from Walker’s theorem. The lower hemi-continuity of Q
has not previously been discussed for games. There is a literature on lower
hemi-continuity in general equilibrium theory, but this requires differen-
tiability and regularity, which are not useful for discontinuous problems.

Remark. On may have a priori notions of a natural topology on S, and
prefer to approximate the equilibria of S with restricted equilibria which
are near their limits in that natural sense. For example, one might wish
nearby strategies to yield nearby “outcomes.” An immediate corollary of
Proposition (3.2) is that any topology on S that is finer than ours will do.
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In particular, any product topology on S such that the =’ are all uniformly
continuous will do, because such topologies are at least as fine as the
inherent-product topology.

PROPOSITION (3.5). The inherent-product topology p is the coarsest
product uniformity® such that the n; are uniformly continuous.

Proof. That the payoffs are uniformly continuous w.r.t. p is obvious. To
see that p is the coarsest such uniformity let 7; be the components of a
uniformity in which the #; are uniformly continuous. We must show that

this implies that p; is uniformly continuous in 7;. Let ¢>0 be given. Since

all the =, are uniformly continuous in t there is a set X; T; with T;et; and
such that (r, t)e T implies |n(r) — n,(¢)] <e&. Thus since (s, s;) € T, by the
definition of a uniformity,

'ni(rja s—j)_ni(tj’ S_j)l <e&. Q.E.D.

4. FINITE- TO INFINITE-HORIZON LIMITS

We illustrate the idea of our limit theorem with a simple treatment of
finite-horizon approximations of infinite-horizon games. Let A4; be a set of
actions for player i. A strategy for player i is a sequence of mappings s, =
(s}, 52,...) where s' € 4; and for > 1 5': (X, A;)'~! = A,. The strategy space
for i, S;, is a subset of the space of all such sequences of mappings. This
allows the incorporation of various restrictions, such as if player two
played a, last period then player one cannot play a,. However, we assume
that there is a designated “null” action 4, for each player which is always
feasible so that if s,€ S, then (s},.., 5!, d4;, 4;,..) € S,.

We approximate S with a collection of finite-horizon games. Define R} =
{s;€ S;|st=d, for t>n}, so that players must play the null action in all
periods after n. Clearly R” will only be a good approximation of S if events
after period n are relatively unimportant.

DEFINITION (4.1). =’ is continuous at infinity if
lim sup |n(s) —n(3)| =0

T - © s, §s.t. (s,..., sT) = (§,..., §7).

3 A uniformity is a type of topological space in which uniform continuity can be defined.

See Kelley [7, Chap. 6] for details.

-4




268 FUDENBERG AND LEVINE

While continuity at infinity is a strong requirement it is satisfied by many

games of interest to economists.

PROPOSITION (4.1). In an infinite-horizon game S, if the m; are continuous
at infinity then for every subsequence of finite-horizon games {R™}, UP-,
R™ is dense in S. Thus the limit theorem and its corollaries apply.

Proof. Obvious.

This proposition generalizes our earlier result, which required an
additional continuity assumption on the payoffs, because we employed a
finer topology. Harris [6] provides a similar generalization for perfect
equilibria.

As an example consider the repeated two-player Prisoner’s dilemma with
discounting. If the discount factor is not too small, it is well known that
with an infinite horizon the “cooperative” strategy” don’t cheat if cheating
has never occurred, otherwise cheat forever” is an equilibrium. However, in
the finite-horizon games the unique equilibrium requires that both players
cheat in every period. What is true is that the “cooperative” strategy is an
¢"-equilibrium with ¢” — 0; indeed &” — 0; indeed ¢” is the cost of failing to
cheat in the later periods when it becomes optimal to do so. In addition the
limit of the finite equilibria “cheat no matter what” is an equilibrium in the
infinite game.

This example illustrates the content of the limit theorem. Every infinite-
horizon equilibrium is the limit of &”-equilibria with lim,,_, ., &" = 0; every
limit of e"-equilibria satisfying this condition is an infinite-horizon
equilibrium. However, as the example clearly shows, there may not be any
0-equilibria in the restricted games which converge to a given equilibrium
in S; ¢" >0 may be required.

A deeper discussion of the finite to infinite-horizon case can be found in
Fudenberg and Levine [3] in which we discuss sequential equilibria with
incomplete information and given applications to the existence and uni-
queness of infinite-horizon equilibrium. Harris’ topology is more useful for
determining uniqueness.

5. OpPeEN-Loopr EQUILIBRIUM

We now suppose that time paths of actions are represented by S;, the
Lebesgue measurable functions from [0,1] to a finite-dimensional
Euclidean space. Payoffs are assumed uniformly continuous in the L,
norm. We define R" to be functions which are constant between lattice
points—that is, on [k/n, (k + 1)/n]. Since these functions are dense in the
L, norm {R"} approximates S and the limit theorem holds.

The space S demonstrates a possible limitation of the limit theorem: S is
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not compact and as a sequence of restricted equilibria may not converge to
anything at all. For example, the sequence of restricted strategies

s‘(k/n)=1, k even
=—1, kodd (5.1)

does not have a limit. This is the “chattering” problem and can arise even
in continuous-time control problems (see, for example, Davidson and
Harris [2]). One solution that works for control problems is to define
“chattering” controls—simply define “idealized” or “generalized” strategies
as the limit of sequences such as (5.1). The limiting “strategy” is simply a
functional which assigns each player the limiting payoff (see Young [15]
for details). Unfortunately this “solution” does not appear to work when
there is more than one player.

6. MIXED STRATEGIES

In this section we consider the relationship between an underlying space
of pure strategies and mixed-strategy equilibrium. The point of this section
is that if the restricted pure-strategy spaces approximate the unrestricted
pure-strategy space uniformly then the restricted mixed-strategy spaces
approximate the unrestricted mixed-strategy space, and so our limit
theorem (Proposition (3.2)) applies. This section also relates our work to
that of Wald [13] on the existence of minimax values.

Let B, be the Borel algebra on S; relative to the p-topology and let S, be
the space of probability measures on B,. We endow S with the product
algebra B and define 3 to be the family of probability measures which are
products of measures of the S;. Since =, is continuous with respect to the p-
topology it is measurable, and thus for §€ S n(5) represents the random
variable induced by =;.

When § is played, player i’s payoff is the expectation of n«(3), which we
denote n*(3). Since m; is bounded, this expectation exists and is bounded.
We call (S, n*) the mixed-strategy game corresponding to (S, n). To
introduce the restricted mixed-strategy games, we assume that R} are
measurable subsets of S, and define R and R" analogously to 3 and S.

The intrinsic product topology on 3, is generated by the pseudometric j;
given by

P35, T)= sup max|n}(3;, h_))— nj‘(?i’ h_) (6.1)

k_ie8.; jeI

The key to extending our result to mixed strategies is the relationship
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between j; and the expectation Ep; of the pure-strategy pseudometric p;.
Observe first that

ﬁi(§is ;1)'_‘: sup max |7[]*(§i, h—i)_nj*(ii, h—i)|9 (62)

h_ijeS_; jel

because the largest difference in j’s payoff caused by opponents’ mixed
strategies is no larger than that caused by their pure strategies. From (6.2)
we see that for pure strategies s; and ¢,, p(s;, ;)= E(p{s;, 1)) = pdsi, t).
However, for mixed strategies §; and 7,, the payoff difference measured by p;
allows only a single choice of the opponents’ strategies A _;, while the
(expected) difference measured by Ep; allows a different selection h_; for
each pair of pure strategies in the support of §; x f,. We conclude that

Pi3:, 1) < E(p{3;, 1))). (6.3)

To extend our results to mixed-strategy equilibria we must strengthen
our notion of what it means for restricted games to approximate S. We do
this by requiring that for fixed n, sufficiently large, points in S can all be
approximated by points in R”, strengthening Definition (3.6), which did
not require the approximation to be uniform.

DerINITION (6.1). The sequence of restricted strategy spaces {R?}
approximates S; uniformly if

w'=sup inf p(s;,r)—0 as n— 0.
SiES;r;€ R;’

In other words, all points in S; can be approximated equally well by points
in R” for n sufficiently large. Obviously if {R"} approximate S, uniformly
for all i then {R"} approximates S.

We can use Eq. (6.3) to show that uniform approximation is inherited
from pure to mixed strategies. The proof maps mixed strategies in S to
mixed strategies in R" by assigning each point in R” all the probability
weight “near” that point.

PROPOSITION (6.1). If {R?} approximate S; uniformly and each R} is
countable then {R?} approximate S uniformly.

Proof. Find a measurable partition of S; with the property that the
diameter of each member does not exceed w?, and such that each member
of the partition contains an element of R}. Since the R} are countable, such
a partition may be constructed by ordering the w”-balls around the points
in R” and deleting from each ball the union of preceding balls. Thus the
function a”: S;— R7 assigning a point in S, the point in R} representing its
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equivalence class in S, is measurable and satisfies p(s;, a7(s;)) S @}. To
each §,€ S, assign the probability measure aj(3;) of the R-valued random
variable induced by 7. In other words, a7(5;) assigns points in R} the
probability of their equivalence class. Then by (6.2)

pi5:, al(5)) < Ep(5;, a7(5)) S o] (6.4)

Thus @7 < 0] = 0. Q.ED.

Remark. If the R did not approximate S; uniformly, we could still par-
tition S, using balls around points in R7, but we could not conclude that
their expected diameter converged to zero as n — co.

The consequence of Proposition (6.1) is that when approximation is
strengthened to uniform approximation the limit theorems carry over
immediately from pure to mixed strategies. This is the case, for example, in
the finite- to infinite-horizon limit discussed in Section 4.

PROPOSITION (6.2). Suppose {R?} approximates S; uniformly, each R} is
countable, and 7" € R".

(A) If the F" are &"-equilibria relative to R with ¢" — ¢ and 7" — § then
§ is an g-equilibrium.

(B) If § is an e-equilibrium and 7" — s then there is a sequence "¢
such that ¥ are &"-equilibria relative to R".

We can also use Proposition (6.1) to show that compact games have
mixed-strategy equilibrium.

PROPOSITION (6.3). If each S; is compact S has a mixed-strategy
equilibrium.

We prove this in two steps. Since §; is a compact metric space it is
totally bounded.

LEMMA (6.4). If each S, is totally bounded then for every ¢>0 S has an
e-equilibrium.

Proof. Totally bounded means (by definition) the existence of a
sequence of finite sets {R?} which uniformly approximate S. Since the R}
are finite, (R,, 7*) has an equilibrium; since the approximation is uniform
the type of inequalities used in Section 3 shows that this equilibrium is a
w"-equilibrium in S. As ®” -0 we have the desired conclusion.

-
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Proof of Proposition (6.3). Since S is compact § is weakly compact.*
Thus the sequence of g"-equilibria with &” — 0 ensured by Lemma (6.4) has
a weakly convergent subsequence. From Eq. (6.3) this is also a p con-
vergent subsequence, and by the limit theorem Proposition (6.2) the limit
point is an equilibrium of 3. Q.ED.

Remark. In proving Proposition (6.3) we make use of the implication
of Eq. (6.3) that weak convergence implies j-convergence.

As Nash equilibrium payoffs are minimax in two-person zero-sum
games, we have

PrOPOSITION (6.5) (Wald). Let S be a two-person zero-sum game. If S,
is compact then § has a minimax value.

7. THE INHERENT TOPOLOGY

While the inherent product topology is fairly natural, and is adequate for
a number of applications, it is too fine to admit parsimonious
approximations of some games. In particular, if payoffs are discontinuous
“along the diagonal” in some natural topology, the use of a product struc-
ture on S is inconvenient. This leads us to pose the problem of finding the
coarsest topology for which a limit theorem like Proposition (3.2) could
hold. We find the coarsest topology under which a slightly stronger result
obtains.

Let us begin by considering two different two-player games on the unit
square illustrated in Fig. 1. In each game both players’ payoffs are equal,
and can be either 0 or 1. In game I, n,(s;, s;) =1 if 5, > 3, 0 otherwise; while
in game I, n,(s;, s;) =1 if 5, = 5,. In either game any point with a payoff of
1 is an equilibrium. In game I the strategy space can be approximated by a
grid of points with coordinates (j/n, k/n); indeed, any two points with the
same payoff are identified by the p-topology (that is, their distance is zero).
In game II, however, all points are at distance 1 from each other, that is,
the p-topology for this game is discrete. Thus the only approximation of
game II in the p-topology is the original game itself. However, it is obvious
that the e-equilibria of the discretized versions of game II are sufficient to
characterize its e-equilibria. It is equally obvious that the appropriate

4 u, converges to u “weakly” if j' fdu, — j fdu for every bounded and uniformly continuous
function f. That § is weakly compact is a consequence of the Alaoglu theorem. It is interesting
to note that Wald [13] does not cite this theorem and gives a direct proof that S is compact.
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FIGURE 1

topology to prove such a result will not have a product structure—two
points on opposite sides of the diagonal are “far apart,” but this cannot be
deduced by comparing each coordinate separately. Discontinuities along
“diagonals” are not uncommon in economic games. They arise, for exam-
ple, in games of timing in which it is substantially better to be first than
second. (For other examples, see Dasgupta and Maskin [1].) For this
reason we would like to have a way of proving a limit result for such
games. As the appropriate topology will not have a product structure, it
will seem less “natural” than the p-topology. We thus abandon
“naturalism” as a criterion, and instead search for the coarsest topology
possible.

First, though, we point out that the original limit result,
Proposition (3.2), is not in fact the strongest result available.
Proposition (3.2A) is consistent with the r” being &"-equilibria only for ¢&”
bounded away from zero, &" —¢, r" —s, yet s being a zero-equilibrium,
because if s is a zero-equilibrium it is also an é-equilibrium for any epsilon.
Proposition (3.2A) requires that the required size of epsilon not “jump up”
in the limit, but it is consistent with the required epsilon “jumping down.”

However, we can prove a stronger version of the limit theorem in which
all the epsilons used are the smallest possible, thus ruling out jumps down
in the required size of epsilon. This result brings the relationship between
the restricted and unrestricted games into sharper focus.

DeFINITION (7.1). For any restricted game R and strategy selection
re R, let £(r, R) be the smallest ¢ such that r is an e-equilibrium relative to
R; that is, for re R, &(r, R)=max; sup. g, (n,(s;, r_;) — n(r)).

PrOPOSITION (7.1). Suppose {R"} approximates S, r"€R", and r" —s.
Then &(r", R") — &(s, S).

-
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Proof. By definition
&(s, S) = sup mh;, s_;)—mis)
ihieS

= sup mi(h},s_;)—m/s)
n,j,hj'.'eR;'
> sup w(hy, r",)—mn(r")—2p(r", s)

n,i,h;-' € R;'

> lim sup &(r", R") —2p(r", 5)

where the first inequality follows from R"< S. As r” — s we conclude that

(s, S) = lim sup &(r", R").

From Proposition (3.2A)
(s, S)<lim inf &(r", R")

and thus it follows that all three values are equal to each other and to
lim g(r", R™). Q.E.D.

An obvious candidate for a coarse topology on S that will be consistent
with (7.1) is that generated by using &.

DEFINITION (7.2). The “inherent” pseudometric is
m(” S) = lg(r, S) - S(S, S)la

which generates the “inherent” or m-topology.

Under m, all strategy configurations with the same ¢ are at zero distance
from each other. For example, two strategies with different payoffs can be
close, which is not the case with p. Therefore, unlike p, m is not likely to be
a metric. Moreover, in contrast to p and to the work of Green and Walker,
players’ preferences need not be open in the m-topology (that is, the
payoffs need not be continuous). This allows topologies which will admit
discrete approximations to discontinuous games such as game II above.

Associated with any topology u on S we have the following notion of
subset convergence:

DEFINITION (7.3). A sequence of restricted games {R"} “u-approaches”
S if 7*e R" and r" —* S implies |&(r", S)—&(r", R")| = 0.

Consequently, R" u-approaches S if for all convergent sequences r”, the
best deviation against r” in R" is almost as good as the best deviation
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against r” in S. As we shall see, the proviso that the sequences r” be con-
vergent is frequently irrelevant.

The reason for our interest in the m-topology and m-approaching is that
these are the weakest conditions which yield “epsilon-continuity.” Consider
a pair (u, o) where p is a topology on S and o is a list of sequences of sub-
sets of S which approach S. Although ¢ need not be a topology, we do
require that (S, S,..) € o; that is, S approaches itself.

DEerINITION (7.4). A game is epsilon-continuous if r* -* s and R" -7 S
imply &(r", R") — (s, S).

In this case since S —° S by assumption, r" —* s implies that £(r", S) —
£(s, S), or, by definition, that r" —»™ s. In other words, m has the most con-
vergent sequences of any topology in which & is continuous. On the other
hand, if r"eR", r*—>*s, and R"—>°S, then g(r", S)—¢(s, S) and
g(r", R") - &(s, S). We conclude that [&(r", S)—g(r", R")]—0, and by
definition this means that R" u-approaches S. Consequently for fixed u the
largest possible collection ¢ consistent with epsilon-continuity is the set of
u-approaching sequences. In summary

PROPOSITION (7.2). A pair (u, o) are epsilon-continuous if and only if p-
convergence implies m-convergence, and every sequence in o u-approaches S.

In practice, we are interested in a fixed sequence of approximations R".
In order to be able to approximate all equilibria in S with equilibria in R",
we must require that the sequence {R"} is dense (in the sense of
Definition (3.6)) in the chosen topology. By choosing the m-topology we
get the most possible convergent sequences, and thus the best possible
chance of density. If, in addition to density, R” m-approaches S the game is
also epsilon-continuous. In this case we have the limit theorem
(Proposition (3.2)) strengthened to epsilon-continuity (Proposition (7.1)).
In practice, rather than testing that R m-approaches S, it is often easier to
check simply that sup. g [€(r", S)—&(r", R")] =0, in which case we say
that R" approaches S uniformly.

If R" does not m-approach S there is a tradeoff. We must examine
topologies u which are strictly finer than m (have fewer convergent sequen-
ces). This makes it more likely that R” p-approaches S, as only those
sequences r"e R" which p-converge need be checked to see if
[e(r", S)—€(r", R")] = 0. In this way we may get epsilon-continuity. On
the other hand, weakening u reduces the chance that R" will be dense, so a
tradeoff is involved. If no topology u can be found in which R” is both
dense and p-approaching, then the necessity of Proposition (7.2) implies
that the game is not epsilon-continuous.
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Unlike the intrinsic product topology, there are no casy theorems
relating the intrinsic topology in a pure-strategy game to the intrinsic
topology of the corresponding mixed-strategy game. Consider the game in
Fig. 2, in which player 1 chooses a number between 0 and 1 on the
horizontal axis and player 2 on the vertical axis. If s, + 2s, is strictly less
than } or strictly bigger than 21, player 1 gets —1, otherwise he gets +1.
For simplicity, player 2 always gets 0. Let §, be the mixed strategy in which
player 2 plays 0 and +1 with equal probability of 3, and §, be the pure
strategy in which player 1 plays 0. Then £(5, S) is 1 since player 1 can gain
this amount by switching to the pure strategy 1. On the other hand, if Rf
does not include the strategy 4 for player 1 then &(5, R")=0. If R} includes
both 0 and 1, and R’ includes O, then §€ R" and R” does not p-approach S
in any topology. On the other hand, in pure strategies, if the R" are
increasingly fine grids, it is clear that R” approaches S uniformly: for any
pure strategy by player 2, player 1 can always get + 1 provided the points
on his grid are spaced no more than 1 apart. The difficulty is that for any
given pure strategy by player 2, either moving a little to the right or a little
to the left of one-half will be as good for player 1 as playing one-half
exactly, even though the other direction may make him much worse off.
With mixed strategies player 2 may randomize between a pure strategy
which requires 1 to approximate to the left and one which requires him to
approximate to the right. In the example, no approximate strategy works
nearly as well as one-half does.

Insofar as the limit theorem is to be used only to prove the existence of
mixed-strategy equilibria in the limit game, some progress is possible.
Dasgupta and Maskin [1] show that if R™ are any sequence of increasingly
fine grids, and the discontinuities satisfy some very stringent conditions,
then limits of zero-equilibria are zero-equilibria. Simon [10] is able to
weaken these conditions somewhat by restricting the set of grids on which
the limit theorem is to hold: in Fig. 2, for example, if R? eventually con-
tained 4, our limit theorem would hold, although not for other grids.

J 3/4
1/4 M3+

1/2

Fig. 2. Payoffs to player 1.
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8. Two-PERSON TIMING GAMES

In a game of timing each player must choose when to undertake a par-
ticular investment or some other activity. Furthermore, if his opponent
moves first, a player may wish to revise his choice of time. Thus a strategy
for player i is to choose a time to move first T; and also a response if his
opponent moves first, p{T_;)>T_;. If T,=T, both players move
simultaneously at this time; if T,<T, one moves at T, =T, and two at
T,=p,(T,), and conversely. Reaction functions are restricted to be
piecewise continuous. The payoff to player i is then 7 ( T,, T,). This we also
take to be piecewise continuous, allowing the possibility that there is 2 sub-
stantial advantage (or disadvantage) to moving first. We also choose to
normalize time so that 0 < T;< 1. This then defines = and S. Note that we
restrict attention to pure-strategy equilibrium: some but not all timing
games have such equilibria.

We approximate S with finite move games—the games R” at which the
feasible choices of time are the lattice points [k/n, (k + 1)/n]. We now wish
to check that in the m-topology R" approaches S and that the limit of R” is
dense in S. In this case Proposition (7.2) and its converse will hold: con-
tinuous-time equilibria can be approximated by discrete-time equilibria and
conversely.

Let s=(T,, T,, p:, p,) be a given profile in S. We must show two
things:

(a) density: find a sequence r” such that g(r”, S) > &(s, S);
(b) m-approaching: if &(r",S) — &(s,S) then [&(r”, S)—e(r",R")] 0.

Turning first to density let s be given. Define r” to be the strategy defined
by rounding off times to adjacent lattice times. Then if A, is a deviation
against s, since the payoffs depend only on the times at which players
move, it is clearly possible to find a deviation 47 in R} that is close to h; in
that the times at which players move at (h7,r” ;) and at (h;,s_;) are
approximately the same. In Fig. 3 the result 4 of 2 playing p, and 1
deviating to T, can be approximated by player 1 deviating to 77 against
the approximate reaction function p3 with the result A”. Furthermore, with
a little care, when the grid is fine enough A7 may be chosen so that these
times lie in the same component as each other (with respect to the discon-
tinuitives in 7, and n_,). Note that in Fig. 3 it is essential that the deviation
T be chosen so that the result A" lies in the same component of the square
(relative to the line of discontinuity) as A. Similarly for a deviation A7
against " we can find a deviation h; against s yielding nearly the same
movement times. Thus (", S) and &(s, S) must be close and as the grid is
refined £(r", S) = &(s, S). This establishes density.




278 FUDENBERG AND LEVINE

T
T O’ / r\/-?
]
{
T2 \
\
n [pan]
Tz(“ L = O
\ \ n
\ -P2
\
\\\
N\\
® d O ™, ©
\\
~
line of discontinuity/ o~
in payoff
D S Dy

1

FiG. 3. In the figure in continuous time 1 chooses T, and 2 responds with 7. In discrete
time 2 responds with the step function p7. To approximate the result that he gets with T,
player 1 should choose T7 resulting in a response of T5. Note that (77, T73) lies in the same
component as (T, T,), ensuring that the payoffs are close.

To show that R” m-approaches S we can simply show that R”
approaches S uniformly, that is, the bound on [&(r", s)—&(r", R")]
depends only on n. Since n is piecewise continuous, the loss from moving
at lattice times depends only on the fineness of the grid and can be boun-
ded independently of the particular lattice strategy followed by the oppos-
ing player. The argument proceeds as above by showing that the times at
which the moves take place nearly the same, and since a piecewise con-
tinuous function is (by definition) uniformly continuous on components
this has only an effect on payoffs bounded by the modulus of continuity.
Thus R" approaches S uniformly.

Note that even if the =, are continuous, the product topology is useless
since the responses can be discontinuous, and these discontinuities do not
respect the product structure of the unit square.

Consider the following simplification of the game in Fudenberg and
Tirole [4]:

(T, T)=(T,+T,)2+ T,-T,
nz(Tl,T2)=(T1+Tz)/2+Tl—Tz, (8.1)
0<T,, T,<1.

The symmetric Pareto optimum outcome is T,=T,=1, which gives each
player a payoff of one-half. This outcome can be sustained as an
equilibrium in continuous time with reaction functions p,(T,)=T, and
p,(T,)=T,. (These reactions are in fact best responses.) While each player
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would prefer to move earlier than this opponent if his opponent’s time were
fixed, the threat of immediate retaliation enforces the cooperative outcome.
In discrete time, a player who is moving at the same time or later than this
opponent always gains at least 8/2 (where & is the period length) by under-
cutting his opponent by one period. The cooperative equilibrium unravels
in the manner of the finitely repeated Prisoners’ dilemma and the unique

equilibrium is T = T, = 0. Consequently, the equilibrium correspondence is
not lower hemi-continuous in the limit of shorter time periods. However,
the cooperative outcome can be sustained as an e-equilibrim in discrete
time, and the required epsilon converges to zero in the continuous-time
limit.
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