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Abstract: The dual self-model of self-control with one-period lived short-run selves is 

excessively sensitive to the timing of shocks and to the interpolation of additional “no-

action” time periods in between the dates when decisions are made. We show that when 

short-run selves have a random length of time this excess sensitivity goes away. We 

consider both linear and convex cost of self-control models, illustrating the theory 

through a series of examples. We examine when opportunities to consume will be 

avoided or delayed; we consider the way in which the marginal interest declines with 

delay, and we examine how preference “reversals” depend on the timing of information.  

To accommodate the combination of short time periods and convex costs of self control 

we extend the model to treat willpower as a cognitive resource that is limited in the short 

run. 
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months marginal interest rate 

0.23 132 

1 82.1 

6 40.9 

12 42.7 

months marginal interest rate 

36 26.0 

60 8.0 

120 9.4 

300 6.6 

1. Introduction 

Models of long-run planning and short-run impulsive selves provide a quantitative 

explanation of a wide variety of “behavioral” paradoxes, including the Rabin paradox 

(small stakes risk aversion), the Allais paradox, preferences for commitment in menu 

choice, violations of the weak axiom of revealed preference, non-exponential 

discounting, and the effect of cognitive load on decision making and reversals due to 

probabilistic rewards. However, these models, like the quasi-hyperbolic discounting 

model, have a fixed horizon for the short-run self, and so they cannot explain 

overwhelming evidence that the length of delay has a continuous impact on decisions. 

These models also make implausible predictions about the value of a commitment that 

avoids temptation:  If the commitment can be made “the period before” the temptation 

would be faced, it is essentially costless, while the commitment is valueless if it must be 

made in the same period that the temptation would occur.  

As an example of the continous effect of delay, consider an experiment from 

Myerson and Green [1995]. Subjects were asked to state how much hypothetical money 

tc  they would need right now to make the indifferent to receiving a hypothetical $1,000 

after a delay of length t . By considering several different delays 1 2,t t  and so forth, we 

can impute marginal interest rate to the subjects, and with standard geometric discounting 

these marginal interest rates should be time invariant. In the Myerson and Green data, 

these marginal interest rates are1
  

                                                 
1 Andersen et al [2008] find evidence of a smaller but still monotone gradual decline of interest rate with 
delay when real financial incentives are provided and adjustments are made for curvature; Benhabib et al 
[2010] also find evidence of a gradual monotone decline using (small) cash rewards. Since Keren and 
Roelsofsma [1995] have already found (in hypothetical experiments) that agents intertemporal choices are 
closer to geometric discounting when rewards are stochastic it is not clear how much of the difference 
between Andersen et al’s findings and those of Myerson and Green are due to the fact that subjects were 
paid. 
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In the long-run/short-run self model with a fixed period length, or in the quasi-

hyperbolic discounting model, the initial marginal interest rate may be high. However, 

these models predict that all subsequent marginal interest rates are equal and low, as 

opposed to the gradual decay seen in the data. 

To account for the continuous effect of delay, and to explore the implications of 

the timing of decisions, we suppose that the short-run self or selves are not completely 

myopic and do value future utility, but less so than the long-run self, either because there 

is a succession of short-run selves with random lifetimes, or a single short-run self whose 

discount factor is lower than that of the long-run self.  This enables us to maintain the 

underlying strength and simplicity of the dual-self model and its ability to account for 

many phenomenon, while accounting for the continuous effect of delay. It also lets us  

model cases where agents are tempted by future consumption, as in Noor [2007], and 

explain why this temptation is most significant with respect to payoffs that are relatively 

soon. 

The key modeling question in extending the dual-self model to non-myopic  

short-run selves is the specification of the cost of self control. In the one-period model 

this cost depends on the amount of utility the short run player foregoes in the current 

period. When short run players have a longer horizon, their expectations about future 

payoffs can matter as well, and we suppose that the control cost of implementing a given 

action depends on how much that action lowers the highest possible average present 

value the short-run self could obtain from the current period on. This specification is 

consistent with the interpretation that the short-run selves are strategically naïve and 

evaluate foregone utility assuming that no self control will be used in the future. 

We begin our analysis with the case where the cost of self control is linear in the 

foregone value. This is the simplest version of the model, and the one closest to the 

standard case, as it is consistent with both the independence axiom for choices over 

lotteries and the weak axiom of revealed preference. Our first application is to the 

decision of whether to accept or reject a “simple temptation”  that gives an initial positive 

payoff followed by a negative payoff in future periods.  We point out that the agent may 

simultaneously prefer to resist a simple temptation when this is a once-and-for all choice, 



 

 

 

3 

and prefer to give in when the temptation must be faced in every period unless and until it 

is accepted; we relate this to the effect of “bundling” of decisions noted by Ainslie [2001] 

and Kirby and Guatsello [2001]. In Example 2 we show that the model explains the 

Myerson-Green data mentioned above, and in Example 3 we explain Della Vigna et al’s 

[2010] finding that the people who are willing to incur costs to avoid contributing to 

charity are the ones who would contribute less when avoidance is not possible.    

Although linear costs are a convenient first cut at self-control problems, there is 

considerable evidence that the costs are often convex, so that it is more than twice as hard 

to resist twice the temptation.  We therefore extend the model to allow for convex costs.  

In Example 4 we study the role of the short-run player’s effective horizon in determining 

when the agent will choose a menu that includes tempting choices and when the agent 

will prefer menus where these temptations are not available.  Examples 5 and 6 then  

point out two implications of convex costs for agents faced with simple temptations: first 

of all, an agent is more likely to resist a temptation that has low probability of being 

realized than one whose payoff stream is certain. Second, an agent who is faced with two 

simultaneous simple temptations may choose to accept one of them, even though he 

would reject both if they were presented in different periods.   

This observation raises the following issues: First, when costs are convex and 

time periods are short, we expect that the non-linearity of control costs should “spill 

over” from a decision in one period to a subsequent decision soon afterwards, so that 

making two decisions in rapid succession is similar to making the two decisions 

simultaneously. Second, since the length of the time period is an artificial construct, we 

want the model to apply to cases where the “time periods” are very short, with decisions 

made in only a few of them. Adding such “intermediate” no-action periods makes no 

difference in classic rational models, but can have counterintuitive implications in models 

of self control. To capture the effect of changing the period length when there are convex 

costs, we suppose that self-control uses cognitive resources  and these are a stock that can 

be depleted over short time intervals, as argued by Muraven et al [1998] and modeled by 

Ozdenoren et al [2009].  From this perspective, the simpler model of the previous 

sections corresponds to cases where the stock of cognitive resources completely 

replenishes from one period to the next: Here we can assume that the foregone value is 
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simply subtracted from the beginning of period stock, with the cost of self control 

corresponding to the difference between the benefits obtained from the full stock and the 

benefits obtained after the reduction, so that a convex cost of self control corresponds to a 

concave benefit function.   

 The reason for introducing a stock of cognitive resources is to track variations in 

the marginal cost of self control and account for the way that using self control in one 

period can alter the self control cost and decision in a subsequent one.  To check that this 

is all it is doing, we first show in Theorem 5 that when there is a single decision, the 

stock of cognitive resources is irrelevant, as the agent’s decision will be the same as in a 

“state-free” model with the appropriately defined cost function.  We then show in 

Theorem 6 that when the marginal cost of self control is constant, the decisions made by 

an agent with a stock of cognitive resources that partially replenishes over time are again 

the same as those made in an associated model without cognitive resources behavior can 

be modeled without the use of the cognitive resources . 

However when the agent makes multiple decisions and the marginal cost of self 

control varies then the equivalence with the state-free model fails, precisely because of 

the link between current decisions and the marginal cost of self control in future periods. 

In general, there are three possible sources of non-linearity in the model, any of which 

can cause variations in the marginal cost of self-control: the way the stock of cognitive 

resources is depleted by using self-control; the way the stock is replenished over time; 

and way the stock provides benefits. However, since cognitive resources are not observed 

directly and have no natural units, there are many equivalent representations of the same 

preferences. Theorem 8 shows that that if there is any replenishment at all, it is without 

loss of generality to specify linear replenishment and lodge all of the non-linearity in the 

depletion and benefit functions. 

After exploring the general properties of the cognitive resources model, we 

consider a number of examples with linear depletion and linear (or no) replenishment.  

Example 8 revisits the example of an agent with convex costs facing two temptations in a 

row, and shows that when resources replenish linearly the agent makes the same choice 

whether the two decisions are made exactly simultaneously or in rapid succession. 

Example 9 shows that when the marginal benefits of resources are concave (so the cost of 
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control is convex) it may be optimal to resist a persistent temptation for a while and then 

take it, a conclusion that is impossible in the stationary model without a stock variable.  

Example 10 builds on this by adding the option to pay a fee and permanently avoid the 

temptation. We show that it may be optimal to resist for a while and then pay the fee, 

which is consistent with the findings of a suggestive recent experiment of Houser et al 

[2010].  Examples 9 and 10 simplify by assuming no replenishment of resources at all, 

which is unrealistic but makes it easier to highlight the logic of the argument. Example 11 

re-examines the persistent temptation from example 9 with a general depletion function 

to highlight how the depletion and benefit function interact to determine whether the 

agent will resist for a while before giving in. Finally, Example 12 shows the issues 

involved in relaxing our assumption that the “willpower technology” is fixed and cannot 

be changed by the agent. 

In the first part of the paper we directly assume an objective function with a cost 

of self-control or benefit from cognitive resources. In Section 7 we show that when we 

rule out the kind of endogenous changes in willpower explored in Example 12, we can 

derive the objective function from a game in which a benevolent but patient long-run self 

faces a sequence of short-run selves who live for a random length of time. In this game 

decisions are made by the short-run selves, but the long-run self can alter the preferences 

of the short-run selves by undertaking “self-control” actions that in general lower the 

utility of the short-run self. 

While this paper is the first to study random short-run player lifetimes in a self-

control model, some past work has used the device of random long-run player lifetimes 

to explain behavioral anomalies: Dasgupta and Maskin [2005] show that uncertain long-

run player lifetimes can lead to hyperbolic discounting. Halevy [2008] develops a model 

where a single long run self faces a stopping (or death) risk that is modified by a convex 

“transformation function” and so is distinct from the agent’s pure time preference. He 

uses this to explain Keren and Roelofsma’s [1995] data, which shows that “present-

biased” preference reversals are much less frequent when both the present and future 
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rewards are uncertain.2 Epper, Fehr-Duda, and Bruhin [2009] use a similar idea of 

distorted survival weights to explain present bias as a consequence of prospect theory.  

Noor [2007] develops axioms for a two-period choice problem in which the agent 

can be tempted by future consumption. His model, like that of Gul and Pesendorfer 

[2001], is more general than ours in relating the temptation values to the objectives of the 

long run player, but less general in imposing the independence axiom and not developing 

the model’s recursive extension, and he does not investigate how this “temptation by the 

future” depends on the real time between the two periods of his model. His main goal is 

to show that there can be a self-control problem despite the fact that future temptation 

results in little demand for commitment. This is connected to our example of menu 

choices with patient short-lived selves. Also in the context of two-period models, Noor 

and Takeoka [2010] develop axioms for choices on menus that correspond to convex 

costs of self control, Brocas and Carrillo [2008] explain the covariance of effort and 

consumption by assuming the long-rub self has incomplete information on the short-run 

self’s cost of effort, and Chaterjee and Samuelson [2009] and Dekel, Lipman and 

Rustichini [2009] axiomatize cases where second period preferences are stochastic and 

can depend on the first period choice of menu.3 For the infinite horizon problem Gul and 

Pesendorfer [2004] develop a recursive extension of their [2001] axioms, including the 

independence axiom.  

2. The Decision Problem 

In dual-self models, the agent acts to maximize expected discounted utility subject 

to a cost of self control that is derived from the preferences of a more impulsive “short 

run self.”  In most of the paper we take this control cost as exogenous; Section 7 shows 

how this maximization problem corresponds to the equilibrium of a game between the 

agent’s “long-run self” and a sequence of short-run selves. To facilitate the exposition 

and also the comparison of the model with previous work, we will use a discrete-time 

model, with periods 1, 2,n = ….  We denote the agent’s discount factor by δ , and 

                                                 
2 Our [2010] paper explains the same data as a consequence of a convex cost of self control.  
3 These two papers differ in how the long run self views the possible second period preferences. 
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suppose that the discount factor of the short-run self is δµ , where [0,1)µ ∈  can also be 

interpreted as the survival probability of the current short-run selves.  

We will frequently be interested in how the solution to the model varies with the 

period length, which we would like to distinguish from the real time between decisions. 

To do this we let the period length be τ  units of calendar time, and suppose that 

exp( )δ ρτ= − and exp( )µ ητ= − ; for small τwe will make use of the approximations  

1µ ητ≈ − , 1 rδ τ≈ − .  

The space of states, denoted Y , is a measurable subset of a finite-dimensional 

Euclidean space, as is the space of actions A . For each state there is a measurable subset 

of feasible actions ( )nA y A⊆  and at least one measurable map :a Y A→  that satisfies 

( ) ( )n na y A y∈ . Dynamics are Markovian, and described by a probability distribution 

over states next period conditioned by the current state and action according to a 

stochastic kernel 1 1( , )[ ]n n ny a dyπ − −  which is a measurable function of 1 1,n ny a− − . 

Each period’s action is taken after that period’s state is known, so the history of 

play at period n  is 1 1 1 1( , , , , , )n n n nh y a y a y− −= … ; the initial history 1 1h y=  is 

exogenously given. A strategy or plan for the long-run self is then a measurable map a  

from histories to actions, so that for each history nh  the strategy specifies an action in 

( ) ( )n nh A y∈a .  

The short-run self (or selves) have get utility ( , )n nu y a  in period n  if the action 

na  is taken in the state ny . We will work with average present values, so that as we 

consider time periods of various length τ  we hold  ( , )n nu y a  fixed. The objective of the 

long run player is the average present value of these short-run self utilities minus a cost of 

self control that is defined with reference to the maximum possible average present value 

for the short-run players. To define this maximum we first define the expected average 

present value of the short-run players.  Let , nh
Ea  be the conditional expectation generated 

by the plan a  and the stochastic kernel, conditional on the history nh . The expected 

average present value of the short-run self from period n  on  under a  is given by  

 , 0
( , ) (1 ) ( ) ( , )

nn h n nU h E u y aδµ δµ
∞

+ +=
≡ − ∑aa

�

� ��
, 

or equivalently   
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 ( ) ( )
, 0

( , ) (1 ) ( , )
nn h n nU h E e e u y aρ η τ ρ η τ∞− + − +

+ +≡ − ∑aa �
� ��=

. 

 

In order to focus on the application of the model and not standard technical details 

we directly impose the following assumption. 

Assumption SR0: 

, ,0 0
(1 ) ( ) ( , ) (1 ) ( ) ( , )

n nh n n h n nE u y a E u y aδµ δµ δµ δµ
∞ ∞

+ + + += =
− = −∑ ∑a a

� �

� � � ��l
 

(the expectation and sum operators can be interchanged) and ( , )nU h a  has a maximum 

for each n  and nh . 

Because the problem of the short-run self is Markov, this maximized utility only 

depends on the state: 

Theorem 1: max ( , ) ( )n nU h U y=a a  

 

Our earlier work  [2006, 2010] on single-period lived short-run selves assumed 

that the cost of self control depends on the amount of utility foregone by the short-run 

player, which is the difference between the maximum possible utility in the current 

period and the utility the short-run player actually receives. When short-run players live 

more than one period, we must specify how the foregone utility takes into account the 

effect of current actions on future payoffs. To do this we suppose that the temptation 

utility used as a benchmark is the highest present value this short run player could hope to 

receive. 

Specifically, we call ( )nU y  the temptation value for the short-run self at n  

starting at state ny  The foregone value is then  

 ( )1 1 1( , ) ( ) (1 ) ( , ) ( ) ( | , ))[ ]n n n n n n n n n n
Y

y a U y u y a U y y y a dyδµ δµ π+ + +∆ = − − + ∫ . 

The foregone value is recursive in sense that it depends on the future only through the 

future temptation utility, and attributes self-control costs to each action as it occurs as 

opposed to entire contingent plans. The key idea is that the current cost of self control 

depends on the current foregone utility, and this is only lost because the current choice of 
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action na  either lowers ( , )n nu y a  or changes the distribution of future states 

1( | , )n n ny y aπ +  and thus the best utility the short-run self could hope to get in the future. 

Future actions that lead to less value than ( )nU y  incur costs at the time at which they are 

taken.  

One interpretation of the foregone value is that the term  

  1 1 1( ) ( | , ))[ ]n n n n n
Y
U y y y a dyδµ π+ + +∫  

is the short-run self’s prediction of the expected continuation payoff, and that short-run 

self  predicts that no self control will be used in the future. Under this interpretation the 

short-run self is strategically naïve and does not anticipate that today’s actions can 

change the amount of self-control that will be used in the future.4 

 Notice that by the principle of optimality any plan that solves max ( , )nU ha a  must 

also solve the dynamic programming problems  

 1 1 1max (1 ) ( , ) ( ) ( | , ))[ ]
na n n n n n n n

Y
u y a U y y y a dyδµ δµ π+ + +− + ∫ . 

Thus we have  

Theorem 2: ( , ) 0n ny a∆ ≥ , and if ˆ arg max ( , )nU h∈ aa a  then ˆ( , ) 0n ny a∆ = . 

 The key element of the theory of self-control is the specification of the cost of 

exerting self-control. We study the linear case first. 

3. Linear Cost of Self Control 

We start our analysis with a particularly simple specification of the cost of self-

control: We suppose that the cost of self control is linear in the foregone value ∆ : it is 

given by ( , ))n ny aΓ∆ , where as above ∆  is measured in units of average present value, 

and the scalar constant 0Γ ≥  is independent of the state.  

The case of linear self-control costs has been the most widely studied. This type 

of self-control model satisfies the Gul-Pesendorfer axioms, including the independence 

axiom. Moreover, while nonlinear costs are important in many applications, many 

                                                 
4 Depending on the cost function, other interpretations are sometimes possible as well, for example in the 
case of linear costs (defined below), the definition of temptation utility is consistent with perfect foresight.  
But the “naïve” interpretation is valid regardless of the cost function. 
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insights still arise in the linear case. We examine increasing marginal cost of self-control 

in subsequent sections, along with the idea that willpower is a stock so that exercising 

self-control can increase the cost of self-control over the next few periods if periods are 

short. 

 The agent’s objective function is defined by the expected average present value of 

short-run utility net of the self-control cost  

 ( ), 0
( , ) (1 ) ( , ) ( , )

nn h n n n nV h E u y a y aδ δ
∞

+ + + +=
≡ − − Γ∆∑aa

�

� � � ��
. 

Note first that this reduces to the linear-costs version of Fudenberg and Levine 

[2006], [2010]) when 0µ = .  Next, note that the foregone value ∆  is not normalized by 

1 δ− . This is in order that the limit as 0τ →  be well behaved. To understand why, 

suppose a once and for all action is taken that lowers utility in every period by. This 

action has foregone value of 1∆ =  independent of period length, and its control cost is 

Γ  regardless of period length. In contrast, an action that lowers utility by 1 for a single 

period but has no impact on future utilities has foregone value 1 δµ∆ = −  and a cost of 

(1 )δµΓ − , which is very small when periods are short. If the long-run player undertakes 

an infinite sequence of such actions the overall cost is (1 )/(1 )δµ δΓ − − , and for this 

reason long-term commitments will be more attractive than a series of short-term ones: It 

is cheaper to resist future temptations now than to resist them as they arise. Moreover, the 

cost of committing now to forego 1 util in every period from N on is 1( )Nδµ −Γ  and in 

particular is strictly decreasing in s , except in the case 0µ = , where the short-run self 

views all future periods 1N >  as equally far away. We illustrate these implications in 

Example 1 below.  

Note that the difference between the long-term and short-term commitments is 

most extreme in the case 0µ = , where the long-term commitment is no more costly than 

any of the one-period delays. The difference diminishes as 1µ→ , holding other 

parameters constant; when 1µ =  the long-term commitment is just as costly as the series 

of short-term ones.  Finally, note that sending the time period τ  to 0 sends 1µ→  but 

changes other parameters as well: Lowering utility by 1 forever starting immediately still 

costs Γ , lowering utility by 1 forever starting at real time /s N τ=  costs 

exp( ( ) )sρ ηΓ − + , and lowering utility by 1 period-by-period immediately costs 
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( )/ρ η ρΓ + . Thus the difference between the long-term commitment and the series of 

short-term ones stems not from the period length but from the greater impatience of the 

short-run self.  

 As in the case of the short-run decision problem, we assume existence of a 

maximum: 

Assumption 0: ( , )nV h a  has a maximum for each , nn h . 

 Notice that this is a Markov decision problem, so it has a Markov solution. That 

is, there is an optimal plan in which the choice of action depends only on the current state 

ny .  

  

Simple Temptations 

Several of our examples will use as a building block what we call a simple 

temptation, which is a choice between either utility 0 in every period or a flow of 0gu >  

that is received for a number of periods N , with 0bu− <  forever after. This choice 

represents a stereotypical conflict between short run and long run preferences that is easy 

to adapt to varying period lengths and to embed in more complicated decision problems.  

The average present values S  for the short-run self and P  for the long-run self of 

this stream are (1 ( ) ) ( )N N
g bu uδµ δµ− −  and (1 )N N

g bP u uδ δ= − − . Our interest lies 

in the case 0, 0S P> <  so that the short-run self would like to take the temptation 

while the long-run self would prefer to reject it. This conflict arises because the short run 

self discounts future periods using discount factor δµ δ< , and will not be present if we 

send µ  to 1 holding all other parameters fixed. However, the reason for interest in the 

case of µ  near 1 is that it corresponds to very short periods. To analyze this case we fix 

the calendar length of time T  for which the favorable flow lasts, so that /N T τ= . 

Then when N  is an integer we have ( ) ( )(1 )T T
g bS e u e uρ η ρ η− + − += − − , and 

(1 )T T
g bP e u e uρ ρ− −= − − , independent of τ , even though 1e ητµ −= → . 
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Example 1:  Resisting Temptation with Linear Cost 

 To begin, consider a choice between accepting and rejecting a simple temptation 

in the first period, with no other choices to be made.  Then the temptation utility is S, so 

the cost of resisting temptation is S−Γ , thus temptation will be resisted if P S< −Γ . 

Next note that if the decision can be made at date 1 about whether to accept or reject the 

temptation in period n, the cost of resisting is ( )nSδµ−Γ , so the temptation will be 

resisted if ( )n nP Sδ δµ< −Γ  or nP Sµ< −Γ ; thus  as the decision concerns events 

further in the future it become easier to resist.  

 Next suppose that the temptation is persistent: if it is resisted the same choice is 

faced again in the next period.5 This model describes for example the temptation to 

consume a durable good such as a bottle of wine.  Once the agent consumes the substance 

it is gone, but if he does not consume, the substance is still there the next period,6 then the 

problem is stationary; in the state 1ny =  the best possible value for the short-run self is 

S and the best continuation if the temptation is resisted is Sδµ , so the foregone value  is 

(1 )Sδµ∆ = − , resisting costs (1 )SδµΓ −  each period, so resisting is optimal if 

(1 ) (1 )P Sδ δµ− < −Γ − . Consequently the persistent temptation is “harder to resist” 

than the simple one, and when (1 )/(1 ) / 1P Sδµ δ− − > Γ > , the agent would choose 

to give in to a persistent temptation but resist a simple one. Under the same conditions, 

the agent would choose to face the simple temptation in the next period rather than face 

the persistent one.  This condition gets increasingly difficult to satisfy as 1µ→  holding 

all other parameters fixed, which corresponds to sending the birth parameter η  to 0.    

Since the main reason for large µ  is that periods are short, it is more interesting to 

study the agent’s choice in the limit of short time periods. Here the agent gives in to the 

persistent temptation but resists the simple one when ( )/ / 1P Sρ η ρ+ > Γ >  or 

                                                 
5 We can formally model this by assuming that there are two states {0,1}Y = , where 0ny =  means that 

the temptation is not available, and 1ny =  means that it is. In the state 0ny =  no action is possible, 

( ) {0}nA y = ; in the state 1ny =  the space of actions is ( ) {0,1}nA y =  where 0  means to resist the 

temptation and 1  means to give in to the temptation. The transition probabilities in state 0ny =  place 

probability 1  of remaining in that state, (0 | , ) 1n ny aπ = , while in state 1ny =  the transition probability 

depends on the action taken: (0 | ,1) 1nyπ =  so that if the action is taken, the temptation is off the table, 

and (0 | , 0) 0nyπ =  so that if the temptation is resisted it remains for next period. 
6 We assume here that the consumption option is all or none, perhaps the wine will spoil once opened.  



 

 

 

13 

( ) S P Sρ η ρ ρ+ Γ > > Γ . This last equation has a simple interpretation: Pρ  is the 

value of postponing the negative payoff P for an interval dt , ( ) Sρ η+ Γ  is the flow cost 

of resisting the persistent temptation, and r SΓ  is the flow or average utility resulting 

from paying the one-time cost of SΓ  to permanently avoid the temptation. 

 If declining the temptation in period n  means that it will not arise again until 

period n + � , the situation is intermediate between a persistent temptation ( 1=� ) and a 

simple one ( = ∞� .) Then the best continuation value if the option is resisted is ( ) Sδµ � , 

so (1 ( ) )Sδµ∆ = − � , and resisting forever costs 

 
0

(1 ( ) )
(1 ( ) )

1
n

n

S
S

δµ
δ δµ

δ

∞

=

Γ −
Γ − =

−∑
�

� �

�
,  

so resisting is optimal if | | / (1 ( ) )/(1 )P S δµ δΓ > − −� � . Consequently resisting is 

more attractive when the temptation can be avoided for longer, and the decision of 

whether to take at once or resist forever is monotone in � :  There is some �  (possibly 0 

or infinity) such that the optimum is to take at once if <� �  and resist forever if >� � . 

Intuitively, this is because the short-run self is much less concerned about far-off events 

than the long-run player is, so the gap between the benefit of delay and the cost of buying 

off the short-run player is increasing in the delay length. If the decision is imminent, there 

is not much point in trying to avoid temptation by making a commitment, as the 

temptation already exists, but it may be worthwhile to commit now to resist future 

temptations. This is related to Noor’s  [2007] point that agents may be tempted by future 

consumption; the additional structure of our model lets us explain how this effect 

depends on the real time between the various decisions as opposed to the period length 

per se. 

Finally consider an initial-period choice of whether to accept or reject K  simple 

temptations, the first one in period 1, the second in period 1 K+ , the third in period 

1 2K+  and so forth.  If the agent is close to indifferent about whether to take the first 

temptation he will strictly prefer to reject the second if that decision could be made in 

period 1. For this reason an agent who would accept the simple temptations, may choose 

to reject the “bundle” of them. This is common behavior, as seen for example in the 
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experiments of Kirby and Guatsello [2001] on the “bundling” of decisions.7  Note that the  

once-and-for all decision to decline a simple temptation can be seen as a “bundle” of all 

of the “decline today” decisions, and in each case the agent prefers the bundle for the 

same reason, namely that he is less tempted by future rewards.  

Example 2: Declining Marginal Interest Rates 

Now we show how the model generates the sort of declining interest rates seen in 

the Myerson and Green data. We take utility to be linear in consumption and without 

further loss of generality we set ( )u c c= .8 We will compute the amount of consumption 

nc  that makes the long run self indifferent between a unit of consumption at time 1 and 

nc  units in period n ; we will then use this to compute effective marginal interest rates on 

consumption. (In the Appendix we extend this to the interest rate used at time 1 to 

discount between any two periods n  and � , which is closer to the long-run player’s rate 

of time preference ρ  because future consumption is less tempting.) Observe that if the 

long-run self is indifferent between one unit now and nc  units later then since 1µ <  the 

initial short-run self strictly prefers one unit now. Hence the temptation is to consume 

now, which incurs no control cost, and provides utility 1 for an average present value of 

1 δ− . The initial short run self gets average present value of 1 δµ−  from consuming at 

time 1, and 1(1 )( )n ncδµ δµ −−  from the delayed option, so the control cost of the delayed 

option is 1(1 )(1 ( ) )n
ncδµ δµ −Γ − − . Thus the utility of the delayed option is 

1 1(1 ) (1 )(1 ( ) )n n
n nc cδ δ δµ δµ− −− − Γ − − . Equating the values of the two options  

determines the consumption level leading to indifference. 

 1 11 (1 ) (1 )(1 ( ) )n n
n nc cδ δ δ δµ δµ− −− = − − Γ − −  

 We can then solve for nc  

                                                 
7 See also chapter 5 of Ainslie [2001]. Both Ainslie and Kirby and Guatsello report that merely telling 
subjects they will face the same decision in the future changes choices as well, which the stationary model 
of this section cannot explain. Note though that Kirby and Guatsello report a much smaller impact of this 
“suggested linking” than of actual linking, and that the instructions they used for suggested linking told 
subjects “the choice you make now is the best indication of how you will choose every time,” which  may 
have induced a spurious effect. 
8 Myerson and Green asked subjects about cash payoffs as opposed to consumption. Both dual-self and 
quasi-hyperbolic models need additional structure to explain why subjects (who presumably save) also 
view cash payoffs as tempting.  Our earlier papers explained this with endogenously-determined  “mental 
accounts;” a similar explanation should be possible here but that remains a project for future work.  
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δ δµ
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Note that as 1µ→ , we have 11/ n
nc δ −→ , which is the solution for a single agent 

without self control costs, and that as 0µ→  we have  

 
1 1

1 1 /(1 )

(1 )
n n n
c

δ δ

δ δ δ− −
− + Γ + Γ −

→ =
−

.9 

  To relate the model back to Myerson and Green we compute the instantaneous  

interest rate for consumption decisions  at real time t nτ=   rate by letting  the period 

length τ  go to 0. In the Appendix we show that 

 
/ 1

0
/

lim log / exp( )
t

t
t

c
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c

τ
τ

τ

ρ η
τ ρ η η

ρ

+
→

  += = + Γ −  
 

In this case the marginal interest rate, to a good approximation, is equal to the subjective 

interest rate of the long-run self, plus a term that declines exponentially at rate η . In the 

case of a short-run self who lives exactly one period, that is, 0µ =  or η = ∞ , the 

marginal interest rate declines after a single period to a constant equal to the subjective 

interest rate of the long-run self. However, for larger values of µ  we get a more gradual 

decline, as we see in the data. 10   

Example 3: Door-to-Door Sales 

This example has two decisions: First, whether to avoid a tempting opportunity, 

and second, whether to give in to temptation if it was not avoided.  (For concreteness, 

think of the avoidance activity as avoiding a door-to-door salesman.)   

                                                 
9 This is the same answer as in Fudenberg-Levine [2006] once we correct for the difference between 
average and total present value: In Fudenberg-Levine temptations were measured with respect to total and 

not average utility so the linear coefficient γ  in that paper corresponds to /(1 )δΓ −  here. 
10 The Myerson-Green data reported above is for money payments and consumption; The  
Web Appendix explains how to extend the model to allow for consumption financed by income and 
savings, and shows that for small income increments marginal interest rates are the same as in this linear 
model. Note that in the data the marginal interest rate declines, but not exponentially. However, if the 
aggregate is averaged over individuals with different exponential rates of decline, then it will not in fact 
decline exponentially. The individual data provided us by Myerson and Green is noisy, but more closely 
exponential than the aggregate data. Note also that the exponential rate of decline follows from the 
assumption of a constant hazard rate for the death of the short-run self, which, while convenient, is not 
essential. 
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The first point, which does not require that short run players can live more than a 

single period, is that costly self-control leads to a non-monotonicity: If the temptation is 

very high or very low then the opportunity will not be avoided but it may be avoided for 

intermediate levels of temptation.  The intuition is that when the opportunity is very good 

there is little conflict between the long-run and short-run self, so the opportunity should 

be taken advantage of and not avoided. When the opportunity is very bad, the short-run 

self will not indulge much in it, and so it is not worth paying a fixed cost for avoidance. 

However, in the intermediate case there may be a more severe conflict between long-run 

and short-run self, so the long-run self may choose to commit in order to avoid the 

temptation.  

The second substantive point does rely on the short run players sometimes living 

more than one period: The appeal of the costly avoidance option depends on the time 

interval between the decision to avoid and when the temptation would arrive, because the  

current short run self is less willing to go along with avoidance when the possible 

temptation would arrive soon. 

The example is very simple and stylized. In period 1 a cost 0F ≥  may be paid or 

not; think of it as not being at home when the salesman calls. If the cost is paid, the utility 

in all subsequent periods is 0. If the cost is not paid, then in period 2 a decision must be 

made on whether to purchase from the salesman. If the purchase is made the utility in 

period 2 is B , otherwise it is zero. In period 3 if the purchase was made it must be paid 

for, resulting in a disutility of 1− . 

To solve the model recursively, we first compute temptation values in each period 

and state, and then compute the agent’s objective function. At that point all that is left is 

to solve the various inequalities to see when each action is best, which we do in the 

appendix. 

We begin by computing the temptation value in the last period in which action is 

possible, namely in period 2 when the avoidance cost has not been paid. Here the short-

run self’s average present value from doing nothing is zero, and that of purchasing is 

(1 )( )Bδµ δµ− − , so 2 (1 )max{0, }U Bδµ δµ= − − .  In the initial state if F  is chosen 

the short-run self’s value is (1 )F δµ− − , while if it is not it short-run player value is  

2Uδµ .  
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If 0B δµ− < , then also 0B δ− <  so in period 2 the optimum is not to purchase, 

which incurs no cost of self-control.  

Now suppose 0B δµ− > . Then if the purchase is made long-run utility is 

B δ− ; if the long run player chooses not to purchase he incurs temptation cost of 

(1 )( )Bδµ δµΓ − − , so the purchase will be made in period 2 when 

(1 )( ) (1 )( )B Bδ δ δµ δµ− − ≥ −Γ − − .  If the avoidance cost is paid in the first period, 

the short-run self’s average value is (1 )Fδµ− − , while the temptation value is 2Uδµ , so 

the average present value of avoidance is 

  
( )
( )

2(1 ) (1 )

(1 ) (1 ) (1 ) max{0, }

F F U

F F B

δ δµ δµ

δ δµ δµ δµ δµ

− − − Γ − +

− − − Γ − + − −
 

and avoidance is optimal if this  is higher than the discounted average value of long-run 

player utility in period 2, which is max{(1 )( ), (1 )( )}B Bδ δ δµ δµ− − −Γ − −   

Denote the strategy of not paying the avoidance cost and not purchasing as 0a , of 

not paying the avoidance cost and purchasing as 1a , and of paying the avoidance cost as 

Fa . In the Appendix we prove the following characterization of the optimal decision 

rule:  

Proposition 3: Set  

 
2 2

*
2

(1 )(1 )(1 )

(1 (1 ))
F

δ δµ δ µ

δ δµ

Γ − − −
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− + Γ −
 

If *F F≥  then 0a  is optimal for    
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*
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and 1a  is optimal if *B B≥ . If *F F≤  then  
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and 0a  is optimal for B B≤  , Fa is  optimal for B B B≤ ≤ , and 1a  is optimal for 

B B≥ . 

Note that the RHS inequality in B B B≤ ≤  gets harder to satisfy as 1µ→  or 

as 0Γ → . In the former case the interests of the short-run self are nearly aligned with 

those of the long-run self, while in the second the short-run self defers to the wishes of 

the long-run self. In either case, paying F  is just an expensive way to not buy. Paying a 

small F  is attractive as 0µ→  as here the first SR self is not very tempted by the second 

period outcome so it is cheap to get him to agree to a commitment that will probably bind 

on the next self. 

 We can also use this example to illustrate the effect of changing the amount of 

time between the two decisions, while keeping other factors constant.  Taking the limit as 

0τ →  we find  

 

2 2 ( ) 2
*

2 ( ) 2

4

2 2

(1 )(1 )(1 ) (1 )(1 )(1 )

(1 (1 )) ( )

( )
0

( )
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s s

e e e
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e e

ρ η ρ η

ρ ρ η

δ δµ δ µ

δ δµ

ρ η ρητ

ρ η τ

− + − −

− − +
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= ≈
− + Γ − + Γ

Γ +
≈ →

Γ +

, 

where the first line holds fixed calendar times  and the second assumes that the decisions 

are made in consecutive periods.  From this we see that it is not worth paying to commit 

when the two decision are very close together; what matters is not the number of 

“periods” between the decisions but the real time between them. 

DellaVigna et al [2010] conduct an experiment on door-to-door charitable fund-

raising. They find if an option to avoid the salesperson is available about a quarter of 

people make use of it, and that if the option is made cheaper by providing a “Do Not 

Disturb” check box nearly a third of people choose to avoid the salesperson. This is as 

our model predicts: the lower the cost of avoidance, the more people will choose it.   

DellaVigna et al also find that those who choose avoidance are concentrated among 

people who donate less when avoidance is not possible. Whether this is the case in our 

model depends on the distribution of B . If the lowest value of B  in the population is 

greater than or equal to B , and the highest value exceeds B , then all those who would 

not contribute when avoidance is not possible (F = ∞ ) will choose avoidance, while 
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only some of those who would contribute choose avoidance; this is what DellaVigna et al 

find. On the other hand, if the highest value of B  in the population is less than or equal to 

B  while the lowest is below B  our model predicts the opposite result. A more elaborate 

experiment could vary the value of B  more systematically – for example in the flier 

describing the visit, indicating that a level of matching funds are available (three dollars 

to the charity for every dollar you donate, for example). This would make it possible to 

test for the non-monotonicity in B  that the model predicts. 

4. Convex Costs of Self Control 

We now consider a simple extension of the model of linear cost of self control by 

allowing the cost of self-control to be convex.   

Specifically, we assume that the objective function is defined by the expected 

average present value of short-run utility net of the self-control cost  

 ( ), 0
( , ) (1 ) ( , ) ( ( , ) )

nn h n n n nV h E u y a g y aδ δ
∞

+ + + +=
≡ − − ∆∑aa

�

� � � ��
, 

where we now assume that g  is a convex function. Allowing g   to be convex is 

important both in light of evidence from the psychology literature, and because in the 

standard dual-self model convex costs are known to explain  preference “reversals” that 

arise from failure of the independence axiom, as in the Allais paradox while  linear self 

control costs cannot, as they are consistent with the independence axiom.11   

 

Example 4: Menu Dependent Choice  

In Fudenberg-Levine [2006] we showed how convex control costs can lead to 

menu-dependent choice in violation of the weak axiom of revealed preference. We now 

extend that example to study the role of the short-run player’s effective horizon, as 

measured by 1/(1 )µ− , in determining when the agent prefers menus that include 

tempting choices and when the agent prefers more restrictive menus that exclude them. 

Consider the following three-period model of menu choice. In the original problem there 

                                                 
11 Noor and Takeoka [2010] weaken independence axiom in Gul-Pesendorfer axioms to allow non-linear 
control costs, and then develop axioms that correspond to control costs being convex. Since they work in a 
two period model with a single choice of a menu, they do not address the modeling issues we discuss here.  
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were three possible actions, broccoli b , frozen yogurt y  and ice cream i . In the first 

period a menu consisting of a subset of actions is chosen from a list of menus M . In the 

second period an action is chosen from the menu; the utility received in periods 2 and 3 

depends on the choicex , we denote it by 2 3( , )( )u u x .  We are interested in the induced 

preferences over menus. In particular, we would like to model a situation where 

{ , } { }b y y�  and { , , } { , }b i y b i� . Here the frozen yogurt is a “compromise” option that 

is appealing in the face of strong temptations but not when faced weaker ones. 

This is known from the work of Dekel, Lipman, and Rustichini [2001] to imply 

that the independence axiom is violated, and since our model with linear g  is a form of 

expected utility it follows that g  must be non-linear.   

In Fudenberg and Levine [2006] we showed that with a single period lived short-

run self ( 0µ = ) and utilities 2 3( , )( ) (0,100)u u b = , 2 3( , )( ) (8, 30)u u y = , 

2 3( , )( ) (14, 0)u u i = , .9δ = , and 2( ) .5g u Gu= , and 1G = that frozen yogurt is indeed 

an optimal compromise. We will now hold the vectors 2 3( , )u u  fixed, and investigate how 

the preferences depend on the other parameters, with focus on the role of µ  and on the 

menus { }b  and { , }b i , ignoring the compromise choice { }y . 

When 0µ =  there is no self control cost involved in choosing the first-period 

menu, so the long-run self can do no better than choose the menu { }b  that consists of the 

best long-run outcome; indeed this menu is the unique optimum. When 1µ =  the long-

run and short-run selves agree on the rankings of both second period choices and first 

period menus; in particular { } { , }b b i∼ .  

To analyze the decision for intermediate values of µ  we start at the end, 

examining the optimal choice from each menu. In the menu { , }b i  the short-run value of 

b  is (1 )100δµ δµ− ; the short-run value of i  is 14(1 )δµ− . Suppose 14 100δµ>  so that 

i  is the temptation. The period-2 value from choosing b  from { , }b i  is then 

( )2(1 ) 100 .5 (1 )(14 100 )Gδ δµ δµ− − − − . We assume that G  is large enough that this is 

negative, so that the optimum is to give in to temptation and choose i . 

Working back to period 1, we now consider the choice between the menu { , }b i   

and the menu { }b . The temptation is { , }b i , which has value (1 ) 4δµ δµ− 1 , while { }b  

gives the short-run player a value of 2(1 )100( )δµ δµ− . The agent’s value from { , }b i  is 

then (1 ) 4δ δ− 1 , while the value from { }b  is 
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( )

( )

22 2

22 2 2

(1 ) 100 .5 (1 ) 4 (1 )100( )

(1 ) 100 .5 (1 ) ( ) 4 (1 )100( )

G

G

δ δ δµ δµ δµ δµ

δ δ δµ δµ δµ δµ

− − − 1 − − =

− − − 1 − −
 

Now set .1µ = ; note that 14 90µ>  so the short-run self prefers i  to b .  

Substituting .9δ = , .09δµ = , the value of { }b  is 2 2 28.1 .5 (.91) (.09) (14 8.19)G− −  and 

the value of { , }b i  is 1.26 so if G  is large enough then { , }b i  is preferred. Also for large 

G  we have 290 .5 (1 )(14 90 ) 0G δµ µ− − − < , so i  will be chosen from the menu { , }b i .  

Hence we have a non-monotonicity in µ : for 0µ = , the menu { }b  is strictly 

preferred, and this remains true for all small enough neighborhood of 0µ = . Similarly, 

for µ  near .1, the menu { , }b i  is strictly preferred. And finally, for µ  equal or close to 1, 

the two menus are indifferent.   

Note that between subjects we can in principle infer both µ  and δ . For example, 

we might conduct an experiment in two stages. In the first stage, subjects are presented 

with intertemporal choices of the Green-Myerson type discussed in Example 1, and from 

this we can infer ,µ δ  for each subject.12 Then in the second stage we give choices 

between menus with items that we think will create different degrees of temptation, such 

as the foods in this example. The theory predicts when we correlate the µ ’s inferred from 

the first stage of the experiment we should observe a non-monotonocity in menu choices 

in the second stage. 

Example 5:  Stochastic Temptations 

 Another implication of convex control costs is that the agent is more likely to 

resist “stochastic temptations” than certain ones. This is the basis of the explanation of 

the Allais paradox in Fudenberg and Levine [2010]; we give a simpler illustration of the 

idea here using simple temptations. When faced with a single, and certain, simple 

temptation, with 0S P> > , it is optimal to choose the temptation if ( )P g S> − . Now 

suppose that instead the agent is faced with the choice between an action which gives 

probability q  of the same simple temptation and complimentary probability 1 q−  of 0, 

or   resisting, with utility flow 0. Then resisting the temptation has foregone value qS, so 

                                                 
12 To avoid the additional complications required to explain temptation by money payoffs we could use 
pizza, as in Kirby and Guatsello [2001]. 
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resisting is optimal if  ( )qP g qS− < , so when g  is convex it  may be optimal to give in 

to the certain temptation but  resist the smaller one. Note moreover that the same 

qualitative conclusion extends to the case where the agent learns in period 1 that she will 

need to make the choice in some future period n : Now the temptation value is 1( )n Sδµ − , 

so the agents resists a lottery that gives probability q  of the temptation if 

( )1 1( )n nq P g q Sδ δµ− −− < , and it is possible for this inequality to hold for small q  but 

not larger ones.  At the same time, though, since there is less of a self-control problem 

about future decisions, increasing n  makes it more likely that the agent resists for all 

values of q . This is consistent with the data of Baucells and Heukamp [2010]: They 

found that 36% of subjects exhibited preference reversal in a common-ratio Allais 

paradox, changing from the safer to the expected-value-maximizing choice when the 

decision is less likely to matter, while only 22% of subjects exhibited this preference 

reversal when all payoffs were delayed by three months. Note finally that the dependence 

of the decision on q   holds in the case where the agent is initially uncertain whether she 

will face the certain temptation or the stochastic one – all that matters is that she knows 

which temptation she is facing at the moment she decides. 

Example 6: Two Tempting Choices 

We now consider a variation on Example 5, where instead of a probability of a 

more or less tempting choice, there is a certainty that two simple temptations will be 

faced: at both 1 1n =  and  2 1n ≥  the agent has to decide whether to accept or reject a 

simple temptation with 0, 0S P> < .  

Our goal is to investigate the sensitivity of the decisions to the timing. Suppose 

first that 2 1n >  so there is at least some brief delay between the two decisions. Because 

of the recursive nature of the formulation and the additivity of the utilities, the two 

decisions are identical. If the option is not taken, utility is 0 and the self-control cost is 

( )g S . If the option is taken, utility is P  and there is no self-control cost, so it is optimal 

to take at both 1n  and 2n  if ( )P g S− < , and not to take if ( )P g s− > . Notice that  the 

solution is the same for any value of 2 1n n> ,and for any period length, so it holds in 

particular if the periods are arbitrarily short. . 
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However, the solution changes if 2 1n n= . In this case the possible actions are 

not to take, 0a = , to take exactly one of the options, 1a = , or to take both options 

2a = . The temptation is to take both options, so utility is ( ) (2 )V a aP g S aS= − − . 

Then (2) (1) 2 ( ) ( )V V P P g S P g S− = − + = +  and  

(1) (0) ( ) (2 )V V P g S g S− = − + .  When g  is strictly convex (2 ) ( ) ( )g S g S g S− > . If 

(2 ) ( ) ( )g S g S P g S− > − >  it is optimal to resist each temptation when the options are 

sequential but it is not optimal to resist both when they are presented simultaneously. 

This shows that this model of non-linear costs is not suited for analyzing decisions that 

occur in rapid succession.  Intuitively, the problem is that the non-linearity of control 

costs should “spill over” from one period to the next when time periods are short.  The 

next section extends the model to allow this. 

5. Willpower as a Stock and Increasing Marginal Cost of Self Control 

The reason that control costs are often convex is that self control can require the 

use of costly cognitive resources, as argued by Baumeister and various collaborators (for 

example Baumeister et al [1998] and Muraven et al [1998]). This implies that soon after 

one tempting choice the marginal cost of another tempting choice will be high; for 

example two consecutive decisions a microsecond apart should be about the same as two 

simultaneous decisions. Thus, to develop a model that is consistent with convex control 

costs and also robust to the timing of decisions and the granularity of the periods, we 

need to incorporate the way the willpower stock induces a spillover from one period’s 

self control to self control in the near future. 13 To do this, we develop a generalization of 

the willpower model of Ozdenoren et al [2009].     

Specifically, we assume that at the beginning of period n  there is a stock nw  of 

cognitive resources or willpower available. Note that this is part of the vector y . 

Foregone value ∆  has the same definition as before, and in particular is not affected by 

nw ; the change in the model is that the cost of self control comes from the fact that it 

                                                 
13 In the longer term, it is possible that willpower can be built up, that is, that the “willpower technology” 
can be improved. This introduces a range of issues that our model does not handle well, and we abstract 
away from it for most of the paper, section 6 explains some of the complications that arise when willpower 
can be increased through training.  
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depletes the stock of cognitive resources.  Specifically, when ( , )n ny a∆  is the foregone 

value, the end of period stock is ( , ( , ))n n n nw f w y a= ∆� , where ( , )nf w ∆  is non-

decreasing in nw  and non-increasing in ∆ , continuously differentiable in both arguments 

and satisfies ( , 0)n nf w w=  and ( , )n nf w w∆ ≤ . Note that the stock of cognitive 

resources depends on the action taken only through the foregone value, so actions that 

maximize the short-run self’s value also maximize the end-of-period stock nw� . 

In Ozdenoren et al the stock is depleted, but never replenished. This is a 

reasonable approximation for the short-duration problem they analyze, but to adapt the 

model to longer horizons we add the possibility that willpower can be replenished. 

Specifically we set 1 ( )n n nw r w w+ = ≥� � , where r  is non-decreasing in nw� ; thus for a 

given nw  the highest that 1nw +  can be is ( )nr w , and this maximum is attained by actions 

that set 0∆ = . We assume also that ( )nr w w≤�  so that there is an upper bound on the 

stock of cognitive resources. If ( )nr w w=�  then resources are replenished immediately, 

which is the usual assumption when short-run selves live a single period. If ( )n nr w w=� �  

resources are never replenished, as in Ozdenoren et al. Self-control costs arise because 

cognitive resources have alternative uses. Following Ozdenoren et al, we assume that an 

(end of period) stock of cognitive resources nw�  yields a utility in other uses of 

( , )n nm y w� , non-decreasing in nw� , and that this is added to the utility from 

consumption.14 Ozdenoren et al view nw�  as representing only the stock of willpower, and 

motivate its assumed value as arising from self-control problems that are not directly 

modeled. In our earlier work we provide evidence that cognitive resources matter, and 

that these resources have alternative uses, so we take a broader view of what the uses of 

these resources might be. 

 The objective function of the long-run self is then to maximize  

 ( ), 0
( , ) (1 ) ( , ) ( , ( , ) )

nn h n n n n nV h E u y a m y f w aδ δ
∞

+ + + + +=
≡ − +∑aa

�

� � � � ��
 

Note that the contribution to utility of the stock of cognitive resources 'n nw +  is measured 

in the same units as utility. Thus if there is a fixed stock w  of cognitive resources, the 

                                                 
14 It does not, however, enter into the computation of the temptation utility or the foregone value, as these 

are a cause of self-control cost, not a consequence. Note also that we do not impose the restriction 0nw ≥�  

as do Ozdenoren et al; however we may set ( , )n nm y w = −∞�  if 0nw <�  to incorporate that constraint. 
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stock produces an amount ( , )m y w  of utility each period. This ( , )m y w  is assumed to be 

concave, differentiable and strictly increasing in w . Recall that with full replenishment 

the cost was not normalized by 1 δ−  as the benefit is here. We will discuss the reason 

for this difference below. 

As in the linear case we assume LR0 which we repeat here for completeness: 

Assumption LR0: ( , )nV h a  has a maximum for each , nn h . 

Note also that, as in the linear case, this is a Markov decision problem, so it has a Markov 

solution that depends only the state ny .  

 We will say that the value of cognitive resources is state-independent if it depends 

on the state only through the stock of willpower; in a slight abuse of notation we use the 

same letter write this as: ( , ) ( )n n nm y w m w=� � . State-independent resource valuation has 

an important implication: it implies that the action most favored by the short-run self 

maximizes the utility of cognitive resources. To see this, define 

 , 0
( , ) ( ) (1 ) ( )

n

k
n h nM h E m wδµ δµ

∞
+=

≡ −∑aa
�

��
� , 

 and note that the value on the RHS is independent of k . If each period’s action is chosen 

to maximize the value ( , )k
nU h a  of the current short-run self, the foregone value each 

period is 0. This implies that the level of resources at each period is as high as possible 

given the initial value; with state-independent resource valuation, any action plan a  that 

leads to this highest possible path for w�  also maximizes the flow of benefits ( )nm w�  in 

the strong sense that no other action plan leads to a higher value of m in any period along 

any history.  As a consequence, any action plan that maximizes short-run utility in each 

period on each history also maximizes the short-run self’s expected discounted value M  

of cognitive resources. We will use this latter implication in relating the model to a game 

between the long run self and the short run self, so we state it as a theorem: 

Theorem 4: With state-independent resource valuation, 

arg max ( , ) arg max ( , )n nU h M h=a aa a . 
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Relation to the Literature 

To relate the model with willpower to past work, consider the “cake-eating” 

problem of Ozdenoren et al [2009].15 Here there is a cake of fixed size, and the only 

choice is a consumption level na  that reduces the size of the cake. We suppose that 

0µ =  and that ( , )n n nr w a w=� � , so that there is no replenishment. Ozdenoren et al 

specify that the temptation is a fixed upper bound on consumption a  if the cake is not 

exhausted, and 0 if it is, and that the rate of willpower depletion is ( , )n nf a w�  for na a< , 

with f decreasing and strictly convex in na . In addition ( , ) 0n nm y w =�  until the stock of 

cake runs out or the time horizon is reached, at which time ( , ) ( )n n nm y w m w=� � . In our 

formulation ( , ) ( ) ( )n n ny a u a u a∆ = − , so if we set 

 ( , ( , )) ( ( ) ( , ), )n n n n n nf w y a f u a y a w∆ = − ∆� , 

we see that their model a special case of ours.16 However, their formulation requires that 

cognitive resource utility is state-dependent. This possibility leads to complications, 

because it implies that the plan most preferred by the short-run self, which is the plan that 

has the least temptation, need not minimize the resource cost of self-control. We examine 

this assumption in section 6, along with the possibility that actions have a direct impact 

on the evolution of cognitive resources; with either of these changes Theorem 4 can fail. 

For the time being we will assume state-independent cognitive resource utility.   

Next, suppose that (i) there is state-independent resource valuation, that (ii) 

( )nr w w=� , so that replenishment is immediate, and (iii) that 0µ =  so that short-run 

selves live only one period. Here the temptation value is max ( , )a nu y a , so 

( , ) max ( , ) ( , )n n a n n ny a u y a u y a∆ = − , and the benefit derived from cognitive resources 

in period n  is ( ( , ( , )))nm f w y a∆ . We can then define 

( ) ( ) ( ( , )) ( ( , )) 0c m w m f w m f w∆ = − ∆ = − ∆ ≥ , and when 0∆ =  we have ( ) 0c ∆ = . 

Then the objective function is equal to   

 ( ), 0
( , ) (1 ) ( , ) ( ) ( ( , )) )

nn h n n n nV h E u y a m w c y aδ δ
∞

+ + + +=
≡ − + − ∆∑aa

�

� � � ��
. 

                                                 
15 That model is in continuous time, here we give the discrete-time version. 
16  The function f  here is not constrained to simply be the difference between nw − ∆ , which allows for 

lower depletion near 0nw = , as in the multiplicative functional form ( , ( , )) ( , )n n n n n nf w y a y a w∆ = ∆ . 
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which is equivalent to the one-period of life formulation used in Fudenberg and Levine 

[2006, 2010]. Note here that neither the function f  nor the function m  matters on its 

own: what matters is the composition m f� , for this is what determines the cost function 

c .
17 

Single Decision Problems 

Cognitive resources serve to link the decisions in one period to control costs and 

thus subsequent decisions. Several of the examples we have considered  so far involve a 

single decision; in those cases the resource variable is superfluous.  To make this precise, 

we define what we mean by a single decision. Let *Y  be the set of states in which a 

decision is possible, that is *y Y∉  implies # ( ) 1A y ≤ . Then the probability of hitting 

*Y  from a state *y Y∈  must be zero: once a decision is offered, no further decisions 

are possible. Notice, though, that if y  can occur in different periods, the amount of 

cognitive resources available for decision making may be different. Suppose that 

1w w= , so that initially cognitive resources are “topped up”. In this case we say that 

resources start full.
18

  

For any period n  define the end of period resource stocks corresponding to an 

initial shock of ∆  and no subsequent shock by ( ) ( , )n
nw f w∆ = ∆� , 

1( ) ( ( , ))n
nw r f w+ ∆ = ∆� , and for 1≥� 1( ) ( ( ( )), 0)n n

n nw f r w+ + +∆ = ∆� �� � . Then the cost of 

self-control corresponding to a single shock is  

 [ ]
0

( ) ( ) ( )n
n ng m w m wδ

∞
+=

∆ = −∑ �
��

� . 

The following result is immediate 

Theorem 5: If there is a single decision and cognitive resources start full,  the 

maximization problems 

                                                 
17 To model the effect of cognitive load (e.g. using short-term memory) on self control, Fudenberg and 
Levine [2006] assume that the control cost depends on the sum of the foregone value and cognitive load; 
this corresponds to assuming that the benefit derived from cognitive resources in period n  is 

( ( , ( , ) ))n nm f w y a d∆ + , where nd  is the cognitive load in period n . 
18 The theorem also holds if there is a fixed time at which the decision is possible. That is if *ny Y∈  

implies *n n=   then we may replace w  with the fixed amount of cognitive resources *w  available 

when a decision is possible, as this is invariant to *y Y∈ . 
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 ( ), 0
(1 ) ( , ) ( , ( , ) )

nh n n n n nE u y a m y f w aδ δ
∞

+ + + + +=
− +∑a

�

� � � � ��
 

 ( ), 0
(1 ) ( , ) ( ( , ) )

nh n n n nE u y a g y aδ δ
∞

+ + + +=
− − ∆∑a

�

� � � ��
 

have the same set of solutions.. 

The Linear Case 

 Next suppose that in addition to conditions (i)-(iii) above, the benefit of cognitive 

resources is linear in ∆ , so that ( , )n n nm y w wγ=� � , and that resource depletion is linear 

as well, so that ( , )f w w∆ = − ∆ .19 Then the cost function defined above 

is ( ) (1 ) (1 ) ( ) (1 )c w wδ γ δ γ γ δ∆ = − − − − ∆ = − ∆ , so the linear model of the 

previous section, where the cost of self-control is independent of δ , corresponds to 

scaling the cost by 1/(1 )δ− . Intuitively, full replenishment means that all of the cost of 

self control is borne in the current period, so if foregone utility reduces the flow benefits 

of cognitive resources by a proportionate amount, the cost of self control goes to zero 

with the period length.  Conversely, if the cost of self-control is invariant to the period 

length and there is full replenishment, the flow cost in a period must become large as the 

periods get small. This is also true when there are convex costs: The convex cost model 

of Section 4 can be viewed as a model with full replenishment and linear depletion, 

where the benefits at w  are independent of τ , while for smaller stocks we have   

( ) ( ) ( )/(1 )m w m w gτ δ− ∆ = − ∆ − . As with the one-period of life model,  in the case of 

general depletion and full replenishment we can define the cost by 

( ) (1 )( ( ) ( ( , )))g m w m f wτδ∆ = − − ∆ . 

 When benefits are linear as well we have a stronger result: the linear model with 

partial replenishment is equivalent to the linear model with full replenishment, so that  

partial replenishment has observable consequences only if at least one of  ,f r  and m is 

non-linear. Specifically, we say the model has linear replenishment of resources if 

( ) ( )n n nr w w w wλ= + −� � �  where 0 1λ≤ ≤ . 

                                                 
19 Note that we define linear depletion to mean that foregone utility is subtracted one-for-one from the stock 
of resources.  In principle depletion might be linear with a coefficient other than 1, but we can normalize 
the coefficient to one by choosing appropriate units for w . 
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Theorem 6: For any model with linear benefit γ , depletion and replenishment λ    

define 

 
(1 )

1 (1 )

δ γ

δ λ

−
Γ =

− −
. 

Then if a  is a solution to the linear model with parameter Γ  then it is a solution to the 

( , )λ γ  model in which actions are independent of nw  and all such solutions to the ( , )λ γ  

model are solutions to the Γ  model.   

Proof: See appendix. 

Theorem 6 shows that if depletion, replenishment, and self-control cost are all 

linear, and state independent, the stock of self control is irrelevant. Note that it is 

important for this result that resources are unbounded below; if there is a lower boundary 

the model is not linear there and the equivalence with full replenishment linear model 

breaks down. Note also that the equivalent linear parameter Γ  depends on the 

replenishment rate: when resources are replenished very quickly ( 1λ = ), the cost of self 

control is of the order (1 )δ−  of a single period’s utility, while when replenishment is 

slow, self control has a long-term cost of order 1.    

Because Theorem 6 maps many ( , )λ γ  models to the same linear model Γ , it also 

implies that these models are equivalent in the sense of generating the same decisions. 

That is, if we change λ  to 'λ  while holding the time period (and thus δ  and µ ) fixed, 

the resulting system ( ', ')λ γ  will have the same cost for every self-control decision if we 

set  

 
1 (1 ')

'
1 (1 )

δ λ
γ γ

δ λ

 − − =   − − 
,  

even though the time-path of the willpower stock in the two models will be different. 

Intuitively, with linear costs all that matters is the average present value of the costs, and 

not their timing, which is why the stock of willpower resources does not matter.  

What happens with linear replenishment when we vary τ , the length of the 

period? We will want to hold fixed the amount of calendar time required for a given 

amount of replenishment, so we set ( ) 1 exp( )λ τ κτ= − − .  This corresponds to assuming 
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that self-control in a given period reduces the stock of willpower at the start of that 

period. That is, we suppose that when n∆  is spent in some period n , the state 

immediately jumps from nw  to nw� , and is then replenished according to the continuous-

time differential equation ( )t tw w wκ= −� . Thus when the period length is τ  we have 

1 exp( )( )n nnw w w wκτ+ = − − − � , so ( ) 1 exp( )λ τ κτ= − − . Note that when the period is 

long, the state almost completely replenishes. Note also that as 0τ →  we have 

( ) 0λ τ → , ( ) 1δ τ → . 

Example 7: Resisting Temptation with Linear Benefits, Depletion and 

Replenishment 

Now we reconsider the persistent, and delayed temptations of Example 1 in the 

model with linear benefit, linear depletion and linear replenishment. As we will see, when 

the marginal value of cognitive resources is constant, the optimum is either to take at 

once or to resist forever. This will help illustrate Theorem 5 and the continuous-time 

limit. It will also set the stage for our subsequent analysis of these temptations when the 

benefit function is concave, where it may be optimal to resist for a while, and then take 

once the marginal value of resources is sufficiently high. 

  We begin with the case of a persistent temptation, where temptation is present 

each period unless and until it is accepted. Note that if the agent always resists, the stock 

of resources evolves according to ( ) ( )n n nr w w w wλ= + −� � �  so  

 
( )1 ( ) ( )

(1 )( ) (1 )( (1 ) )

n n n n

n n

w w w r w w w w w

w w w w S

λ

λ λ δµ

+− = − = − + −

= − − = − − + −

� � �

�
 

Since 0 1λ< < , the solution to this difference equation 

1(1 )(1 (1 ) )(1 ) /n
tw w Sλ λ δµ λ−= − − − − − , which converges monotonically to the 

steady state solution ( )* ( 1 ) (1 )w w Sλ λ δµ= − − / − , so that 

 * (1 ) (1/ )(1 )tw w S w Sδµ λ δµ→ − − = − −�  .   

Note that as the time period goes to 0, the steady state converges to (( )/ )w Sρ η κ− +  In 

particular, as 0κ→  a steady drain of resources sends the stock to minus infinity, while 

as κ→ ∞  resources replenish so quickly that any bounded outflow has negligible 

impact.  
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 If the benefits are linear, so that ( )m w wγ= , then by Theorem 6 the solution is 

the same as in the linear case: The agent will resist the temptation if 

(1 ) (1 )P Sδ δµ− < −Γ −  and accept it when the reverse inequality is satisfied, where  

 
(1 )

1 (1 )

δ γ

δ λ

−
Γ =

− −
.  

Substituting we see that the agent resists if  

 

( )

(1 )
(1 ) (1 )

1 (1 )

1 (1 ) (1 )

P S

P S

δ γ
δ δµ

δ λ

δ λ γ δµ

−
− < − −

− −

− − < − −
 

 

Note that if λ  is small, this is about (1 ) (1 )P Sδ γ δµ− < − − , while if 1λ =  it is   

(1 )P Sγ δµ< − − . Recall that P  is negative so as λ  gets bigger this is easier to satisfy 

as we would expect. 

To study what happens when the time period is short, we rewrite  

( )1 (1 ) (1 )P Sδ λ γ δµ− − < − −  as 

 1 exp( )(exp( ))) (1 exp( ( ) )Sρτ κτ γ ρ η τ− − − < − − − + ,  

and then approximate, yielding  

 ( )P S
ρ

ρ γ ρ η
ρ κ

< − +
+

. 

Here the LHS is approximately the gain of postponing P  by τ , and the RHS is the cost 

of postponement; this is the reduction of resources of ( )Sρ η+  multiplied by the 

continous-time limit of the discrete-time cost parameter Γ .  

 As a check and explanation of Theorem 6, note that we get the same answer 

working directly with the partial replenishment system in continuous time: If the agent 

takes at once, the value is P wγ+ . If the agents resists forever, then in the associated 

continuous-time limit the state follows the path 

 ( ) / exp( )(( ) / )tw w S t Sρ η κ κ ρ η κ= − + + − + . 

The value on the this path in the continuous time model is 
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( )

( ) ( )
0

0

exp( ) ( ) / exp( )(( ) /

( ) / exp( ( ) ) ( ) /

( ( )/ )( / )) ( )/ )

t w S t S

w S t S

w S w S

ρ ρ γ ρ η κ κ ρ η κ

γ ρ η κ ρ ρ κ ρ η κ

γ γ ρ η κ κ ρ κ γ γ ρ η ρ κ

∞

∞

− − + + − + =

− + + − + + =

− + ( + = − + ( +

∫

∫  

So again we see that it is optimal to resist if ( )/ ))P Sρ γρ ρ η ρ κ< − + ( + .  

Note that when κ  is very large compared to the other parameters, the right hand 

side is near 0 so it is always better to resist: if resources get quickly replenished whenever 

they dip slightly below the steady state. 

To extend this analysis to the case where declining the temptation delays it for a 

real time s , recall that when declining puts off the temptation for �  periods, it is optimal 

to resist if (1 ( ) )/(1 )P Sδµ δ< −Γ − −� � , and substituting for Γ  yields 

(1 (1 ))/(1 ) (1 ( ) )/(1 )P Sδ λ δ γ δµ δ− − − < − − −� � .  If we suppose that the delay is s  

units of real time, /s τ=� , and send τ  to zero while holding s fixed, then it is optimal 

to resist if  [ ]( )/ (1 exp( ( ) )/(1 exp( )P s s Sρ κ ρ γ ρ η ρ+ < − − − + − − . 

In the case s τ= , in which the delay is only a single period, this inequality 

reduces to [ ]( )/( )P Sρ γρ ρ η ρ κ< − + +  which is what we had before. As s → ∞ , the 

condition reduces to /( )P Sγρ ρ κ< − +  which is easier to satisfy. More generally, as in 

the discrete-time model the decision of whether to take at once or resist forever is 

monotone in s : There is some s  (possibly 0 or infinity) such that the optimum is to take 

at once if s s<  and resist forever if s s> . When we re-examine this problem with a 

concave benefit function, we will see that it can be optimal to resist for a finite length of 

time and then take, and that the optimal time to give in is monotone in the length s  of the 

delay. 

 For ease of reference we summarize these findings with a proposition: 

Proposition 7:  With linear benefit, depletion and replenishment 

a) When the agent is faced with a persistent temptation, and 

( )1 (1 ) (1 )P Sδ λ γ δµ− − > − − , he takes it at once; he resists the temptation forever 

when ( )1 (1 ) (1 )P Sδ λ γ δµ− − < − − .  Thus the agent will resist for a while and then 

take only in the knife-edge case when he is indifferent between taking at once and 

resisting forever. 
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(b) In the limit of time periods going to zero, the agent takes at once if 

( )/ ))P Sγ ρ η ρ κ> − + ( + and resists forever if  ( )/ ))P Sγ ρ η ρ κ< − + ( + . Thus as 

κ → ∞  the agent resists forever,  and as 0κ →  the agent takes at once if 

( )P Sρ γ ρ η> − + . 

(c) If declining the temptation puts it off for s  units of calendar time, the agent takes at 

once or resists forever as P  is greater or less than 

[ ](1 exp( ( ) )/(1 exp( ) /( )s s Sρ η ρ γρ ρ κ− − − + − − + . 

 

The Replenishment Rate in Models with Linear Benefit and Cost 

If the system can be represented as linear replenishment for some κ , along with 

linear depletion and linear benefits, then as we saw in Theorem 5 the system is equivalent 

to the full replenishment model. Taking the limit as 0τ →  we find that the equivalent 

marginal cost is  

 
(1 exp( ))

1 exp( ( ) ))

ρτ γ ργ

ρ κ τ ρ κ

− −
Γ = →

− − + +
 

In this limit, if κ  is very small so that any reduction in the stock is almost permanent, 

then γΓ → .  At the other extreme, when κ  is very large, the equivalent cost Γ  is near  

0. Intuitively, in this case reductions in resources are replaced so quickly that they are 

virtually costless, even though the amount of replenishment in a given period goes to 0 

with τ .  

To construct a limit that where the replenishment rate per period does not go to 

zero, take 1/κ τ= , so that ( ) 1 exp( 1)λ τ = − −  for all τ ; here the equivalent full-

replenishment cost of self control is   

 
(1 exp( ))

0
1 exp( ( 1))τ

ρτ γ

ρτ

− −
Γ = →

− − +
. 

This is a different answer than the one we obtained earlier in the full replenishment case 

when we held Γ  fixed, as there we did not scale the cost of cognitive resources by 1 δ− . 

Hence we get different limiting results depending on whether we consider a limit in 

which cost falls relative to utility as we vary κ . The full-replenishment limit we 
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considered earlier, where Γ  is constant, corresponds to scaling γ  along with κ ; to hold 

Γ  constant when 1/κ τ= , we need to set  

 
( )1 exp( ( 1))

(1 exp( ))

ρτ
γ

ρτ

Γ − − +
=

− −
, 

so that self control remains costly in the limit, even though the stock of willpower 

replenishes very quickly. Note that in the limiting model of full replenishment the stock 

of willpower is irrelevant, so the model is essentially “state-free.”  However, the limiting 

argument shows that rapid replenishment with a very high flow value of benefits behaves 

in a way very similar to that state-free model. 

In the linear model the stock of willpower does not play a significant role: as we 

observed all replenishment rates are equivalent for appropriately chosen values of γ  and 

are equivalent to full replenishment for an appropriate value of Γ . When there are non-

linearities in ,f r  and/or m , the stock of willpower determines the way the cost of 

foregone utility is allocated between different periods,  so the rate of replenishment plays 

a more essential role. This is the case we study next. 

6. Cognitive Resources, Non-linearities, and Replenishment  

The main reason for introducing the cognitive resources variable is to allow for 

the possibility that (1) the cost of self-control depends on the stock, (2) the stock does not 

completely replenish from one period to the next, so that exerting willpower in one 

period can have a carry-over effect on decisions made soon afterwards, and (3) the agent 

faces more than one decision so using self control in an earlier decision can alter the 

control cost in a subsequent one. The simplest way to capture this is to suppose that there 

is no replenishment at all, so that the stock evolves according to 

1 ( , ( , ))n n n nw f w y a+ = ∆ .  This stark assumption is sufficient for demonstrating many of 

the implications of willpower as a resource that is limited in the short run, but it is not 

necessary, and many of the same results obtain provided that replenishment is 

incomplete.   

In general, the dynamic value of cognitive resources given the foregone utility 

process n∆  is governed by the depletion equation ( , )n n nw f w= ∆� , the replenishment 
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equation 1 ( )n nw r w+ = �  and of course the benefit function ( , )n nm y w� . Putting together 

the depletion and replenishment equations gives the dynamics of cognitive resources 

1 ( ( , ))n n nw r f w+ = ∆ , where ( )n nw r w w≥ ≥� �  is non-decreasing and 

( , ) , ( , 0)n n n n nf w w f w w∆ ≤ =  is non-decreasing in nw  and non-increasing in n∆ . 

Linear Replenishment 

The units in which nw  are measured are essentially arbitrary; by changing them 

we change ,f r  and m .  As we shall see there is redundancy in these three functions, 

meaning that we can choose one of them to normalize.    

Specifically, let 0 1λ< <  be a fixed number. We would like to construct a 

change of units 1' ( )w h w−=  so that the property ( ( ')) ( ( '))h w w w r h wλ− − =  is 

satisfied, so that the replenishment function 'r  corresponding to 'w  has the linear form 

' '
1 '( )n nw r w+ = � . Given such a function we may define 1'( ', ) ( ( ( '), ))f w h f h w−∆ = ∆ , 

1'( ') ( ( ( '))m w h m h w−= , and in the new units with the new depletion and benefit of self 

control functions, we have restated the problem so that replenishment is linear. 

There are a variety of ways of constructing an h  function. One simple method is 

to consider intervals (0, ]I wλ λ=  under the mapping ( ') ( ')T w w w wλ≡ − − . Notice 

that the intervals of the iterated map ( )nT Iλ  (since T  is invertible, we allow negative 

values of n ) form a partition of ( , )w−∞ . Hence for any 'w w<  there exists a unique 

integer ( ')n w  (possibly negative) such that ( ')' ( )n ww T Iλ∈ . The interval Iλ  for the units 

'w  corresponds to (0, (0)]r  in the original units 'w . Define   

 
( ')

( ') ( ')
( ') (0)

n w
n w T w

h w r r
wλ

− =   
. 

If (0) 0r >  and r  is strictly increasing for w w<� , (0, (0)]r  is a non-empty interval, so t 

h  maps onto ( , )w−∞ . In this case h  is strictly increasing, so invertible, and by 

construction ( ( ')) ( ( '))h w w w r h wλ− − = . If r  is continuous, h  is continuous and 

(0) 0h = ; h  extends uniquely to a continuous function on ( , ]w−∞  by defining 

( )h w w= . 

 We summarize this as a theorem. 
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Theorem 8: Suppose that r  is continuous and strictly increasing and that (0) 0r > . The 

system with replenishment '( ') (1 )( ')r w w w wλ= − − − , depletion 

1'( ', ) ( ( ( '), ))f w h f h w−∆ = ∆ , and benefit function 1'( ') ( ( ( '))m w h m h w−=  maps 

strategies to values of the agent’s objective function exactly as does the system with 

replenishment function ( )r w , depletion function ( , )f w ∆  and benefit function ( )m w . 

 Notice that the rescaling of units to linearize r  is possible only when there is 

some replenishment (0) 0r >  and less than full replenishment r  strictly increasing. 

When there is full replenishment, we cannot change the units to spread the foregone 

utility shock over time: only in the linear case does Theorem 5 hold – as soon as there is 

non-linearity partial replenishment spreads the marginal cost of self-control over time.   

Note also that if we start with a system where benefits and depletion are linear, and 

replenishment is linear with some 'λ , then the equivalent system in units of 'w  for a 

different value of λ  is not linear. This may seem puzzling in light of our earlier 

observation that Theorem 5 implies an equivalence between linear models with different 

replenishment rates. However, the equivalence in Theorem 5 is only for average present 

values, not the stronger sort of equivalence established here, which tracks the moment-

by-moment movement of the flow benefit of cognitive resources. The weaker form of 

equivalence is sufficient when benefits and depletion are linear, but once these functions 

are allowed to be non-linear the stronger sort of equivalence is needed, and this 

equivalence requires a non-linear change of units. 

Non Linear Costs and Linear Replenishment 

Now we investigate the implications of non-linear costs when the agent faces 

multiple decisions, so that self control in one period can increase the marginal cost of self 

control in the next one.   To make the computations easier we pick units so there is linear 

replenishment, ( ) ( )n n nr w w w wλ= + −� � � , In the examples that follow we will frequently 

need to compute the average present value of cognitive resources when the stock at the 

start of period n  is some arbitrary nw  and no self control is used from period n . With 

linear replenishment and no foregone utility, (1 )n nw w wλ λ+ = − +� �
� . Along this path 

the average present value of cognitive resources is 
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0

( ) (1 ) ( )n nM w m wδ δ
∞

+=
= − ∑ �

��
.  

To study the effect of varying the period length recall that we take 

( ) 1 exp( )λ τ κτ= − − , so for small τ  we have ( )λ τ κτ≈ .  

Example 8: Two Tempting Choices with Linear Depletion and Replenishment 

Now we re-analyze the two temptations of example 6 assuming partial linear 

replenishment and linear depletion., We show that the agent makes the same decision 

whether the decisions on the two temptations are made simultaneously or in very rapid 

succession, because the time path of cognitive resources is basically the same, whether 

the agent resists temptation of value two S  in a single period or resists S  in two 

consecutive periods that are close together . 

Suppose first that the decisions are made in consecutive periods, so that 1 1n = , 

2 2n = . The agent has four possible plans: 

 

Take both options: The first option is provides direct utility of P , the second option 

provides Pδ , and no self control is used, so overall utility is 1(1 ) ( )P M wδ+ +  

. 

Take only second option:  Self control of S is used in the first period,  and none thereafter, 

so 1 1w w S= −� , 2 1 (1 )w w S wλ λ λ= − + − , and the overall value is  

1 20 (1 ) ( ) ( )m w S P M wδ δ δ+ − − + + . 

 

Take only the first option: No self control is used in the first period; in the second period 

the foregone SR utility (and thus the expenditure of cognitive resources) is S  and no self 

control is used thereafter, so cognitive resources at the end of the second period are 

1 (1 )w w Sλ λ+ − − , so the stock at the start of the third period is 

( ) 2 2
3 1 1(1 ) (1 ) (1 )w w w w S w w Sλ λ λ λ λ λ λ≡ − + + − − = + − − . The value of this 

plan is thus 2
1 1 3(1 ) ( ) (1 ) ( (1 ) ) ( )P m w m w w S M wδ δ δ λ λ δ+ − + − + − − + . 
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Reject both options: Self-control is used in both periods, 

2 2
3 1 (1 ) (1 )w w w Sλ λ λ λ= + − − +  so the value is 

2
1 1 3( ) (1 ) ( (1 ) ) ( )m w S m w S w S M wδ δ λ λ λ δ− + − − + − − + . 

 

Because the two projects are identical, when the decisions are made 

simultaneously there are only three plans to consider:  

 

Take both options: Here the overall value is 12 ( )P M w+ . 

Take one option: Here 2 1w w S wλ λ λ= − + , and overall value is 

1 2(1 ) ( ) ( )P m w S M wδ δ+ − − + . 

Reject both options: Now 2 1 2w w S wλ λ λ= − +  and the overall value is 

1 2(1 ) ( 2 ) ( )m w S M wδ δ− − + . 

 

 

We now send τ  to 0, and examine the case where two decisions are made in 

consecutive periods. In the full-replenishment model of the previous section, resisting 

temptation of S  in two consecutive periods reduces the flow of cognitive benefits each 

period from ( )m w  to ( )m w S− , which reduces average value (compared to no self 

control) by (1 )( ( ) ( ))m w m w Sδ− − − , while resisting 2S  in a single period reduces 

average value by (1 )( ( ) ( 2 ))m w m w Sδ− − − , which is strictly larger, even as 0τ → ,  

because m  is concave.  

In the present problem with linear replenishment, we see that the time path of 

cognitive resources is basically the same, whether the agent resists temptation of two S  

in a single period or resists S  in two consecutive periods that are close together: In the 

first case resources jump down to 2w S−  at the end of the first period, in the second 

case we have 1 ;w w S= −�  2 1 1(1 ) (1 )( )w w w w S wλ λ κτ κτ= + − ≈ − − +� , and   

 2 1 1 1(1 )( ) 2 ( )w w S w S w S w w Sκτ κτ κτ= − − + − = − + − +� . 

Hence as 0τ → , 2 1 2w w S→ −� , which is the level of 1w� in the case of a simultaneous 

decision. It follows that  when the agent has a strict preference for accepting 0 or both 
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options with simultaneous decisions, she will have the same preference when the decision 

times are close together. If the agent strictly prefers to take one option with simultaneous 

decisions, she will prefer to take the first one when decisions are sequential 

Example 9: A Persistent Temptation with Non-Linear Benefits and No 

Replenishment 

To further explore the implications of willpower being a stock that can be 

depleted over time, we now revisit the persistent temptation of examples 1 and 4 in a 

setting with no replenishment of cognitive resources, linear depletion, and non-linear 

benefits.  One of the main differences is that with it may now be optimal to resist a while 

and then take the temptation once the marginal benefit of resources becomes sufficiently 

high.  

Because there is no replenishment at all, the stock decreases by (1 )Sδµ∆ = −  

each time the agent resists, and if the agent resists �  times before giving in, his value is 

  

 
1 1 1
1

(1 ) ( (1 ) ) ( (1 )n n

n n
m w n S m w S Pδ δ δµ δ δµ δ

− ∞− −
= =

 − − − + − − +  ∑ ∑� �

�
�  

The bigger is �  the smaller is the first term and the larger is the second. This implies that 

a necessary condition for an optimal �  is that the value for resisting 1+�  time is not 

bigger, and that a sufficient condition for 0=�  optimal is that the value for 1=�  is 

lower. Let us look at the value for �  minus the value for 1+� , noting that prior to �  the 

arguments of m  are the same in both cases  

 [ ]( ) ( (1 ) ) ( ( 1)(1 ) ) (1 )D m w S m w S Pδ δµ δµ δ= − − − − + − + −�� � � . 

Observe that since m  is convex, ( )D �  is strictly increasing, so it is optimal to take at the 

first time this expression is positive, and never to take if it is always negative. To 

characterize the solution for small τ  define /( , ) ( / )/ (1 )sd s D s ττ τ δ δ= − . Note that 

this has the same sign as D  so can equally well be used to characterize the optimum. 

Observe that 

 0( ) lim ( , ) '( ( ) )d s d s m w s S S Pτ

ρ η
τ ρ η

ρ
→

+
= = − + +  
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We see that if '( )m −∞ = ∞  it is always optimal to give in; if  

 '( ) 0m w S P
ρ η

ρ

+
+ <  

then it is not optimal to give in right away, and that the optimal time to give in is 

characterized by ( ) 0d s = .  

 This case of no replenishment is extreme, and we will soon revisit this example to 

allow not only partial linear replenishment but also a general depletion function. First, 

though, we want to make a simpler point about the possibility it is optimal to “wait to 

commit.” 

 The case where declining the temptation postpones the decision for a number of 

periods T  is also of interest.  Using an analogous argument to the one above, it can be 

shown that the stopping time is increasing in T ; we omit the details. 

Example 10: Waiting to Commit 

 Now we add to Example 9 the possibility of taking the temptation off the table for 

a cost F P< . For simplicity we analyze only the no-replenishment case with linear 

depletion.  

Using the argument from Example 9, we see that for small enough τ  it is not 

optimal to commit immediately if 

 '( ) 0m w F S F
ρ η

ρ

+
− − < . 

A sufficient condition is  

 '( ) 0m w P S F
ρ η

ρ

+
+ − < , or 

(*) '( )
F

m w P
S

ρ

ρ η
+ <

+
 

 Let us suppose that  

 '( ) 0m S P
ρ η

ρ

+
−∞ + <  
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so that in the absence of the possibility of commitment, it is optimal never to give in, 

resulting in at least the value ( )m w P+ .Taking the temptation off the table in the first 

period gives value 

 
1

0 1
lim (1 ) ( (1 )

( )

n

n
m w S F F

m w F F

τ δ δ δµ
∞ −

→ =
 − − − − −  

= − −
∑

 

Hence a sufficient condition for committing is ( ) ( ) 0m w m w F P F− − + + < . 

Observe that  

( ) ( ) '( ) '( )m w m w F F P m w F F F P m w P F F P− − + + ≤ − + + ≤ + + +

. 

Thus a sufficient condition for committing is  

 '( ) 1
P

m w P
F

+ < − . 

This together with (*) from above are sufficient for it to be optimal to wait a while then 

commit. To see that both conditions can be satisfied simultaneously, take / 2F P= . 

Then the sufficient condition for committing is '( ) 1m w P+ <  while (*) becomes 

 '( )
2

P
m w P

S

ρ

ρ η
+ <

+
.  

 

In other words, if the marginal benefit of cognitive resources is low when resources are 

higher than w P+ , and if F  is small, but not too small, then it pays to use cognitive 

resources for self-control until the marginal benefit of cognitive resources is sufficiently, 

then commit to taking the temptation off the table. 

 Houser et al [2010] have a very suggestive experiment indicating that delay in 

commitment may occur in practice. This experiment was designed to test previous 

models with myopic short run selves, and the experimental instructions did not specify 

when and whether opportunities for giving in might occur in the future. Thus it is not 

clear what subjects believed about this, and whether the perfect foresight analysis applies. 

That is, while delay was observed, we can not be certain from these experiments whether 

it is the type of delay predicted by this model. We are hopeful that future experiments 
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may shed more light on the type of delay that can occur with cognitive resource 

depletion, but not without it. 

 

Example 11: A Persistent Temptation with Non-Linear Benefits, Partial Linear 

Replenishment and General Depletion. 

We now examine a final variation on the persistent temptation problem. We  

consider a persistent temptation without the option to commit, and now assume partial 

linear replenishment,  and allow general depletion. This lets us highlight the interplay of 

the benefit function m  and the depletion function f .   

To begin, note that regardless of the form of the benefit and depletion functions,  

if there is full replenishment the problem is stationary, so it is never optimal to wait for a 

while and then take. Defining the cost of self-control as in Section 4, by 

( ) (1 )( ( ) ( ( , )))g m w m f wτδ∆ = − − ∆  we see that the policy of taking at once gives 

payoff ( )P m w+ , and resisting forever gives payoff ( ( ,(1 ) ))m f w Sδµ− , so resisting 

forever is optimal if ( ( ,(1 ) )) ( ) ((1 ) ))/(1 )P m f w S m w g Sδµ δµ δ< − − = − − − .  

 Now let us generalize the linear case with partial replenishment to allow for a 

lower bound on the stock of cognitive resources. That is, in place of linear m  we have 

( )m w wγ=  for 0w ≥  and ( )m w = −∞  for 0w <  (which is our way of modeling a 

lower bound of 0 on resources). If (1 )P Sγ δµ< − −  then as in our earlier analysis the 

optimum is to take the temptation immediately. If ( )1 (1 ) (1 )P Sδ λ γ δµ− − > − −  the 

solution is to resist forever if it is feasible to do so: 

( )* (1 ) 1 (1 )(1 ) 0w S w Sδµ λ δµ− − = − / − − ≥ 1 (1 ) /S wδµ λ− − > . Otherwise, if 

( )1 (1 ) (1 )P Sδ λ γ δµ− − > − −  and 1 (1 ) /S wδµ λ− − <  the solution is to resist until 

one more period of resistance would “exhaust the stock” (that is make 0w <� ) and then 

give in to the temptation.  

Now let us consider the general case, normalizing to have linear replenishment.  

We assume that m  and f  are twice continuously differentiable, and that  

 
((1 ) ) ( , 0)

dm f
A w Aw w

dw

∂
− − +

∂∆   
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(which is positive) is decreasing in w ;  we call this “increasing marginal cost of self 

control.” Note that there is increasing marginal cost of self-control if m  is strictly 

concave and f  is linear. We may also write this condition in terms of second derivatives 

as 

    

2 2

2 ((1 ) ) ( , 0) ((1 ) ) ( , 0) 0
d m f dm f

A w Aw w A w Aw w
dw wdw

∂ ∂
− − + − − + <

∂∆ ∂∆∂ ,  

If m  is concave, this says that the cross-partial of f  should not be “too negative.”  If the 

cross partial is strongly positive, then m  need not be concave. 

Proposition 7: Suppose there is increasing marginal cost of self control and there is 

strictly partial linear replenishment, 0 κ< .   Then there is 0τ >  such that if τ τ< ,  

there are 0P Pτ τ> >  such that it is optimal to resist forever if P Pτ> , it is 

optimal to resist until period ˆ 1∞ > >�  then take if P P Pτ τ> > , and it is 

optimal to take immediately if P Pτ > .  Let 0 0,P P  denote the limits as 0τ → . Let sW  

be the solution to the differential equation 

 ( ) ( , 0)( )t t t

f
W w W W Sκ ρ η

∂
= − + +

∂∆
� , 

and let W∞  be the solution to  0 ( ) ( , 0)( )
f

w W W Sκ ρ η∞ ∞
∂

= − + +
∂∆

.  Then 

 ( )
0

0
( ) '( ) ( , 0)t f

P S e m W W dtρ κρ η
∞

− +
∞ ∞

∂
= − +

∂∆∫ , 

 
( )

0
0

( ) '( ) ( , 0)t f
P S e m w w dtρ κρ η

∞
− + ∂

= − +
∂∆∫  

and if 0 0P P P> >  then 0
ˆˆ lims τ τ→= �  is finite and strictly positive, and is 

determined by  

 ( )
ˆ ˆ

0
( ) '( ) ( , 0)t t

s s

f
P S e m w e W W dtρ κ κρ η

∞ − + − ∂
= + −

∂∆∫ . 

 

Remark 1: One way of reading this result is that the agent’s choice depends on the 

magnitude of P, but recall that (1 )T T
g bP u uδ δ= − −  and  
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(1 ( ) ) ( )T T
g bS u uδµ δµ= − − , so changing P  implies changes in S  and/ or in δ  and µ  

(or ρ  and η  in the continuous-time formulation) and any of these other changes will also 

matter for the decision.  

 

Remark 2: To better understand the formulas given above, note that when depletion and 

benefits are both linear,  

 ( )
0 0

0

( )
( )

( )
tP P S e dt Sρ κ ρ η

ρ η γ γ
ρ κ

∞
− + +

= = + =
+∫   

which is the same as the condition for the critical value of P given in part (b) of Theorem 

6 for the linear case.  

 

Remark 3: To illustrate the fact that “concavity of the optimization” can come from any 

of the 3 functions ,f m and r , consider the case where f  and m   are linear, and r   is 

piecewise linear:  

1( ) ( )n n nr w w w wλ= + −� � �  for *[ , ]nw w w∈�  

2( ) ( )n n nr w w w wλ= + −� � � , for  *
nw w<� ,   

where 1 11 exp( ),λ κ τ= − − 2 21 exp( ),λ κ τ= − − and 

 2 1( )/ ) ( )/ )S P Sγ ρ η ρ κ γ ρ η ρ κ− + ( + < < − + ( +  

Then if the replenishment rate was fixed at 1κ  the agent would always resist, while if it 

was fixed at 2κ  the agent would take the temptation at once. We claim that the short-time-

period solution with the piecewise linear replenishment function is to resist until 

resources fall to *w . To see why, first consider the agent’s problem when the state is at 

*w . Resisting forever gives exactly the same payoff as when the replenishment rate is 

fixed at 2κ , and taking gives a higher payoff than with replenishment fixed at 2κ , so since 

taking gives a higher payoff here than with 2κ κ=  the agent takes.  Next consider the 

agent’s problem when *w w> : the gain from resisting for a short interval and then 

taking the temptation, instead of taking it now, is exactly as in the case 1κ κ=  so the 

agent resists. 
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The proof of Proposition 7 is in the appendix, but the intuition is simple. We first 

show that because of the increasing marginal cost of self control, and because resisting 

temptation lowers the stock next period, the gain to waiting one more period is monotone 

in  the number of periods �  that the temptation has been resisted.  Thus, if P  is small 

enough (sufficiently bad) relative to all the other parameters it is optimal to wait forever, 

if P  is  close enough to 0  it is optimal to take at once, and for intermediate P it is 

optimal to wait a while and then take.  For an arbitrary length τ  of the time period, this 

intermediate region may be empty, but when τ  is very small the concavity assumption  

ensures that it is non-empty. 

 

 

7. The Game Between Long-run and Short-run Selves 

We now want to show that the optimization problem we have been considering 

can be identified with the outcome of a game between the long-run self and a sequence of 

short-run selves. To do this we introduce an augmented state variable kY  that is defined 

in any period n  in which a new short-run self is born, and includes along with ny  the 

value of n ; that is ( , )k nY y n= . Notice that any strategy a  mapping histories to actions 

induces a well-defined stochastic kernel 1( , )[ ]k kY dY +Π a .  

In the game formulation the “actions” are taken by the short-run selves, and the 

long-run self chooses “self-control” actions that influence the preferences of the short-run 

self. Each short-run self can be thought of as choosing an a : Although this contains 

irrelevant information such as how the short-run self will behave after he “dies” we will 

ignore this in computing the short-run self’s payoff. Following Fudenberg and Levine 

[2006] we assume that before the short-run self moves, the long-run self chooses a self-

control action e ∈ Ξ . It is convenient to take 0E = A∪ .We wish to study a sequence 

of stage game between the long-run self and the k th short-run self. The k th stage game 

consists of a choice of self control action e  by the long-run self and a response a  by the 

short-run self. The utility of the k th short-run self has the form ( , , )ku Y e a , which we 

specify below.  
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Histories in this game are sequences of augmented states kY  along with the 

chosen actions ,k ke a , while a strategy from the long-run self is a map e  from the 

previous history to a self-control action, a strategy for the k th short-run self is a map 

ka from the previous history and choice of the long-run self to an action. The vector of 

strategies for all short-run players is denoted a
	

. We define the conditional expectation 

operator , , kY
Ee a  given the strategies e, a  and state kY . The long-run self is completely 

benevolent and maximizes the discounted sum of short-run self utilities: 

 
11 , , 0

( , , ) (1 ) ( , , )
k

k k kY k
V Y E uY eδ δ

∞

=
≡ − ∑e ae a a	

	� . 

We now wish to specify the utility function of the short-run self to satisfy the 

assumptions of costly and unlimited self-control and limited indifference in Fudenberg 

and Levine [2006]. In that paper we give a procedure for deriving a utility function from 

an underlying objective function and a “cost of self control” function. We mimic that 

procedure here – the goal being to define the objective function for the short-run self so 

that the reduced form optimization problem is that of maximizing 

 ( )
1, 0

(1 ) ( , ) ( , )n
Y n n n nn

E u a y m y wδ δ
∞

=
− +∑a � . 

To this end we first define , , n

k
YEe a  to be the conditional expectation when k  is alive. 

Write 

 0, , 0
( , ) (1 ) ( ) ( , )

k

n kk S
k Y k n k nn

U Y E u a yδ δµ
−∞

+ +=
≡ − ∑aa�  

and as above 

 0, , 0
( , ) (1 ) ( ) ( , )

k

n kk
k Y k n k nn

M Y E m y wδ δµ
−∞

+ +=
≡ − ∑aa� � , 

 

Following Fudenberg and Levine [2006] we define 

 

'( , ) max ( , ') 0

( , , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

k k

k k k k k

k k k k

U Y M Y r

u Y e U Y e M Y e e U Y U Y e

U Y M Y e U Y U Y e

 + == + − − ≥ + − − <

aa a

a a a

a a a a

� �

� � � �

� � � �

 

The cost of self-control is now defined to be  
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| ( , , ) ( , , )

'

' '

( , ) ( , 0, ) max ( , , )

0 arg max ( , 0, )

max ( , ') ( , ) arg max ( , 0, )

k kk k e u Y e a u Y e k

k

k k k

C Y uY u Y e

u Y

M Y M Y uY

≥ ⋅≡ −

∈=  − ∉

a

a a

a a a

a a

a a a a� �

 

which has the property that ( , ) 0kC Y ≥a  and ( , ) 0kC Y =a  if and only if 

'arg max ( , ')kU Y∈ aa a� .  

 Notice that the cost of self-control does not necessarily satisfy the property of 

being an opportunity cost. In general an opportunity cost for the short run self would have 

the form 

 ( , ) ( ( ) ( , ))k k kC Y GU Y U Y= −a a� � . 

Here the self-control cost is computed each period by the difference between the best 

expected present value available to a short-run self born in that period and the present 

value actually received, taking into account what will actually happen in future periods, 

in contrast to our definition of the recursive cost, which is “as if” no self-control will be 

used in future periods.  However, as this dependence is only through the variation of the 

marginal cost over time: In the linear case, where marginal cost is constant, the recursive 

cost is an opportunity cost.  

Theorem 10: If ( , ) ( ( ) ( , ))k k kC Y U Y U Y= Γ −a a� �  then ( , ) ( , )k kC Y C Y=a a� . 

The proof is in the Appendix. They key idea is that the principle of optimality for the 

short-run self enables us to write the overall loss to the short-run self as a sum of 

recursively computed losses 

 

( )( )
, 0

, 0

( ) ( , )

( ) (1 ) ( ) ( , )

(1 ) ( ) ( , )

n

n

n
n n

n
n h n n

sn
h n n

U y U h

U y E u y a

E y a

δµ δµ

δµ δµ

∞
+ +=

∞
+ +=

− =

− − =

− ∆

∑
∑

a

a

a

�

� ��

� ��

 

Hence the opportunity cost is just a weighted sum of the increments ( , )n ny a+ +∆ � � , and 

the proof simply consists of bookkeeping to verify that the weights are the same as in the 

recursive case.  In the linear case, in other words, it does not matter whether the 

cost of imposing self-control on the short-run self arises from recursive considerations or 

from an opportunity cost. However, in the non-linear case, the model of opportunity cost 
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leads to implausible predictions about timing, such as changes in behavior when a short-

run self “dies.” Hence we focus on the recursive model of self-control cost in the non-

linear case. 

As in Fudenberg and Levine [2006] we wish to consider equilibria in which the 

short-run selves optimize following every history and the long-run player anticipates this 

reaction and plays like a Stackelberg leader. This is designed to capture what we imagine 

is the strategic naivete of the short-run self: With one-period lifetimes for the short-run 

players, this Stackelberg equilibrium is equivalent to subgame-perfect equilibrium in 

which the long-run player moves first against each short-run player, and to the weaker 

concept of “SR-perfect Nash equilibrium” defined in Fudenberg and Levine [2006].  If 

we assume that the long-run player can choose a self-control action ke  that is observed by 

short-run self k  before choosing plan ka  SR-perfect Nash equilibrium has the same 

implication here. However, the assumption that ke  is chosen once and for all at the 

beginning of the life of short-run self k  is stronger when the short-run self lives multiple 

periods. First, the self-control action changes the preferences of the short-run self over 

many periods. Second, the self-control action cannot be “changed” as long as the 

particular short-run self is alive. Again, this assumption is intended to capture the 

strategic naivete of the short-run self. 

As is the case in which the short-run self lives only for a single period, the 

expectations of the short-run self about play by the long-run self do not matter, because 

the long-run self has already moved. For this reason, the situation does not correspond to 

a repeated game (which it would in the absence of the commitment assumption.) 

Moreover, the case for subgame perfection may be stronger here than it is in general, as 

when the long-run self can commit, the predictions of subgame perfections are less 

sensitive to changes in the information structure.   

Fudenberg and Levine [2006] defines a SR-perfect Nash equilibrium profile to be 

equivalent to a solution to the reduced form optimization problem of maximizing 

 ( )
1, 0

( , 0, ) ( , )k
Y k kk

E uY C Yδ
∞

=
−∑a a a  

if the reduced strategy induced from the short-run players strategy profile is a solution to 

the optimization problem. Conversely, if there exists a SR-perfect Nash equilibrium 
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profile with this property for a particular solution to the optimization problem, we say 

that this solution of the reduced form optimization problem is equivalent to the SR-

perfect Nash equilibrium profile. As the conditions of Fudenberg and Levine [2006] 

Theorem 1 are satisfied, this equivalence does indeed hold. 

 We now wish to relate solutions to the optimization problem equivalent to SR-

perfect Nash equilibria 

 ( )
1, 0

( , 0, ) ( , )k
Y k kk

E uY C Yδ
∞

=
−∑a a a  

to those of  

 ( )
1, 0

(1 ) ( , ) ( , )n
Y n n n nn

E u a y m y wδ δ
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the agent’s objective function that we have used as the starting point in this paper. To this 
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Let ktA  be the probability k  is alive at t  then we may write 
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Thus the reduced form of the game is the same agent’s objective function that we used in 

our analysis, hence our study of the solutions of the agent’s objective function can be 

interpreted as an equilibrium of this game.   

 Notice that we have assumed that the long-run self can commit for the lifetime of 

the short-run self. This is intended to capture the strategic naivete of the short-run self as 

a passive actor. Notice that if the long-run self simply moves first each period but cannot 

commit to contingent plans for future periods, the equilibrium here is still a SR-perfect 

equilibrium, since we have shown that the solution to the reduced form optimization 
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problem is Markov, so that the long-run self has no wish to renege on his commitment. 

However, without commitment there can be other equilibria in which the short-run self 

chooses a plan different from that suggested by the long-run self as part of a repeated 

game equilibrium. However, we regard such equilibria as inconsistent with our notion of 

nature of the short-run self. 

6. Actions That Increase Cognitive Resources   

So far, except when discussing the Ozdenoren et al model, we have assumed that 

cognitive resources depend on actions only through the foregone utility ∆ , and that 

cognitive resources are maximized by setting 0∆ = . In particular, we have assumed that 

the replenishment rate ( )nr w�  does not depend directly on the action taken, and that the 

value ( , )n nm y w�  of cognitive resources is state independent, so actions do not indirectly 

change the effective level or value of cognitive resources.  Notice that Theorem 4 fails if 

the value of cognitive resources m  depends either directly or indirectly on actions or 

elements of the state other than tw . This is a key ingredient in the game between the 

long-run and short-run self: it means that there is no intrinsic conflict between the two 

over the use of cognitive resources, which is why the reduced form derived from the 

game is the same agent’s objective function we have examined in detail. In the examples 

of this section, Theorem 4 fails, which raises the question of which is the “correct” 

objective function: the agent’s objective function used above and in the examples, or the 

reduced form that is derived from the game between long-run and short-run self. Indeed it 

raises broader questions about what is the appropriate model. 

Observe that the issue of value of cognitive resources depending on the history 

also arises in the linear case. Here in addition to the failure of Theorem 5, Theorem 4 also 

fails: it is no longer true that the stock of self-control serves merely to allocate the 

marginal utility of self-control between periods. 

The next example illustrates the complexities that can occur when actions can 

directly influence future marginal costs of self-control: current choices can have the same 

implications for future choice as a commitment to avoid temptation, but, unlike such a 

commitment, lowering the marginal cost does not lower the short-run self’s highest 
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attainable payoff, so it has no foregone value and thus does not require a control cost to 

implement. 

 

Example 12: State-Dependent Marginal Cost 

We assume full replenishment of willpower each period, so the stock of 

willpower is constant and thus irrelevant. As in the case of constant marginal cost, we 

assume both linear resource depletion and linear value of cognitive resources. However, 

we drop the assumption that the marginal benefit of cognitive resources are constant, and 

instead let them depend on the state.  Specifically, we assume ( , ) ( )n n n nm y w y w= Γ� �  and 

more specifically that the marginal benefit ( )nyΓ  in period 1 is 0Γ >  while from period 

2 it is either Γ  or 0 depending on the first period choice. ( 

 In period 1 there is a choice of whether or not to pay a cost F ; think of it as 

spending time learning self control, perhaps with the aid of a counselor or religious or 

spiritual advisor. If the cost is paid then there is no problem of self control at all in future 

periods, that is ( ) 0nyΓ = ; if the cost is not paid, the marginal benefit remains equal to 

Γ .  

In period 2 the agent can decide whether to take or resist a simple temptation, 

with short-run player value S  and direct value P  for the long run player, with 

0S P> >  and P S< −Γ , so that if the agent does not pay in period 1, it will be 

optimal to take in period 2. 

Now we examine the decision in period 1. The future best value for the short run 

self is Sδµ , regardless of whether F  is paid today or not. Thus the temptation utility is 

Sδµ , the utility the SR associates with “pay” is (1 )S Fδµ δµ− − , so the foregone value  

of “pay” is (1 )F δµ−  and the self-control cost for this action is  (1 )F δµΓ − .  Hence it is 

optimal in the reduced form problem to “pay” whenever (1 )F Pδµ δΓ − < − .  

In contrast, if paying F  today made taking tomorrow impossible, the foregone 

value of “pay” is (1 )S Fδµ δµ+ − , so for some parameters (such as µ  close to 1) the 

commitment will not be optimal even though the arguably equivalent “training” action 

would be. The difference between commitment and lowering self control costs is a 
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consequence of our assumption that the short-run selves are strategically naïve, so that 

the short-run  player is unconcerned by any action that leaves the feasible set unchanged. 

Models with non-naïve short-run players may also be of interest, but they are much more 

complicated.20 

To make this example simple, we kept the stock of willpower constant and 

assumed that the first-period action had a direct effect on the cost of self-control in the 

second period. Similar effects could be obtained if we allowed the replenishment function 

r  to depend on the action as well as on the end of period willpower, and let the benefits 

of cognitive resources be slightly concave (so that the cost is slightly convex). 

Specifically, suppose that acting in the first period increases the willpower stock from 1 

to *1 w+ , and that the benefit of cognitive resources w  is wα  for some (0,1)α ∈ . Then 

if the agent does not act in the first period, the cost of resisting second period temptation 

is  1 (1 )S Sα αδµ αδµ− − ≥ , while the cost if the agent acts goes to 0 with *w .  

7. Conclusion 

The random-lifetimes extension of the dual-self models allows for short-run 

selves who live more than a single period, and provides a natural way to capture the way 

preferences change as the “period” becomes shorter. This lets us explain why 

commitments to avoid far-off temptations are less costly, and more attractive, than 

commitments to avoid more imminent ones, and lets us explain the subjective interest 

rates decline with delay. The random-lifetime version of the model also provides a 

natural way to examine the effect of the length of the periods between potential decision 

nodes. This is important because the concept of a discrete time period in these decision 

problems is simply a convenient construction, and the extended model shows how the 

delay between consecutive decisions should matter for whether agents exhibit 

“preference reversals.”  

 When the marginal cost of self-control is constant, the agent’s decision problem is  

not affected by the timing of when self-control costs are incurred, and there is no need for 

the model to track the stock of the agent’s cognitive resources: As we saw, the model 

                                                 
20 This example suggests that non-naivety is necessary to capture St. Augustine’s request “give me chastity 
and continence, but not yet.”  
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with linear replenishment, benefits, and depletion is equivalent to the “state-free” model. 

However, once non-linearities become important, so does the timing of self-control 

decisions and  costs; the willpower stock provides a way to model the “spillover” from 

one period’s self control to future self control costs.   

 We explored some but far from all of the many possible ways to model these non-

linearities, and these is ample scope for future work on this. In particular we have looked 

for plausible properties, such as insensitivity to minor changes in timing; it would be 

useful to compile these properties in axiomatic form to better understand the universe of 

models that satisfy them. Also, it would be good to extend the qualitative analysis here by 

exploring the extent to which we can find, for each individual agent, a stable constellation 

of preference parameters that fits that agent’s quantitative behavior across a range of 

problems. This was done to a limited extent in Fudenberg and Levine [2010] for the 

model where short-run selves live a single period, not for individual subjects but for the 

median subject across a number of different experiments. However, several of the 

experiments studied there are better fit by allowing short-run selves to have random 

lifetimes; for example Baucell et el [2007] show that paradoxical choices in Allais-type 

problems are reduced but not eliminated when the payoffs are delayed. 
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 Appendix 

Example 2: Derivation of marginal interest rates  

 

/ 1
0

/

/ /

0

1 1

/ 1

0 /

lim log /

1 (1 )

(1 ) (1 )( )
lim log /

1 (1 )

(1 ) (1 )( )

(1 ) (1 )
lim log

(1 ) (1 )

t
t

t

t t

n n

t

t

c
MR

c

τ
τ

τ

τ τ

τ

τ

τ τ

τ

δ δµ

δ δ δµ δµ
τ

δ δµ

δ δ δµ δµ

δ δµ µ

δ δ δµ δµ

+
→

→

− −

−

→

 =    
 − + Γ −    − + Γ −  =   − + Γ −    − + Γ − 
 − + Γ − =   − + Γ − 

/ 1

0 /

1 1

0

/ 1 /

0

/ 1

0

/

1 (1 ) (1 )
lim log /

(1 ) (1 )

1 1
log log(1 ) log(1 ))

1 1lim

1 1
log(1 ) log(1 ))

1 1lim

1
log(1 ) l

1lim

t

t

n n

t t

t

τ

τ τ

τ

τ τ

τ

τ

τ

τ

δ δµ µ
τ

δ δ δµ µ

δµ δµ
δ µ µ

δ δ
τ

δµ δµ
µ µ
δ δρ

τ

δµ
µ
δρ

−

→

− −

→

−

→

−

→

 − + Γ − =   − + Γ − 
− −

+ + Γ − + Γ
− −=

− −
+ Γ − + Γ

− −= +

−
+ Γ −

−= +
/

1

0

1
og(1 ))

1

1 exp( )( 1)
lim exp( )

1

t

t
t

τ

τ

δµ
µ
δ

τ

δµ η µ ρ η
ρ ρ η η

δ τ ρ

−

→

−
+ Γ

−

− − − +
= + Γ = + Γ −

−

 

Example 2 Extended 

Now extend the analysis of example 2 to consider the choice between consuming 

an amount at time n + �  and a single unit of consumption at time 1 + � . If the agent is 

informed of the choice at time 1 but cannot commit to a decision until time � , then 

because there is a Markov solution that depends only on the current state, it follows that 

the choice will be the same as if the choice only became available in period � . Moreover 

because the preferences of both long-run and short-run selves are stationary, the amount 

of consumption at n + �  that makes the long-run self indifferent between consuming 1 

unit at 1 + �  or waiting to consume at n + �  is the same as the amount that would make 
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the agent indifferent between consuming 1 unit at time 1 between a unit at time 1 or 

waiting to consume more at time 1 n+ .  

The situation is different when the agent can make an irrevocable choice at time 

1: the first short-run self faces a temptation cost but no other short-run self does. This 

raises the possibility that the choice may depend upon � . We will compute the value of 

1 ,nc + +� �  that makes the long run self indifferent between a unit of  consumption at time 

1 + �  and 1 ,nc + +� �  units at time n + � ;  we will then use this to compute effective 

marginal interest rates on consumption.  

Observe that as in the case 1n =  if the long-run self is indifferent between one 

unit at time 1 + �  and 1 ,nc + +� �  at time n + � , then since 1µ <  the initial short-run self 

strictly prefers one unit at time 1 + � , so the temptation is to consume at time 1 + � . 

Thus consuming the one unit at time 1 + � , incurs no control cost, so the long-run 

player’s utility of utility of this choice is (1 )δ δ− � .  (Since the decision is taken at time 1, 

no other short-run self feels any temptation.) The initial short run self gets average value 

utility (1 )( )δµ δµ− �  from consumption at time 1 + � , and 1
1 ,(1 )( )n ncδµ δµ + −

+ +− �

� �
 from 

the delayed option, so the control cost of the delayed option is 

1
1 ,(1 )( ) (1 ( ) )n

ncδµ δµ δµ −
+ +Γ − −�
� � . The direct utility of consuming 1 ,nc + +� �  at n + �  

is 1
1 ,(1 ) n

ncδ δ + −
+ +− �
� � , so the reduced form utility is 

( )1 1
1 , 1 ,(1 ) (1 )( ) (1 ( ) )n n

n nc cδ δ δµ δµ δµ+ − −
+ + + +− − Γ − −� �
� � � �  Equating the present 

value from choosing the earlier consumption of 1 at 1 + �  to that from 1 ,nc + +� �  at   

determines the consumption level leading to indifference. 

 1 1
1 , 1 ,(1 ) (1 ) (1 )( ) (1 ( ) )n n

n nc cδ δ δ δ δµ δµ δµ+ − −
+ + + +− = − − Γ − −� � �
� � � �  

Dividing both sides by δ �  yields 

 1 1
1 , 1 ,1 (1 ) (1 ) (1 ( ) )n n

n nc cδ δ δ δµ µ δµ− −
+ + + +− = − − Γ − −�
� � � � , 

 so we see that the effect of moving both consumption dates forward by �  is to reduce the 

marginal cost of self control from Γ to µΓ � . 

 We can then solve for consumption giving  

 1 , 1 1

(1 ) (1 )

((1 ) (1 ) )
n n n

c
δ δµ µ

δ δ δµ µ
+ + − + −

− + Γ −
=

− + Γ −
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Note that this says that the effect of a delay 0>�  is to decrease  the effective cost of self 

control by the factor η� : Intuitively, the initial short run self is less tempted as the delay 

increases so the self-control cost goes down. If we suppose that the delay is some fixed 

real time,  so the choice is between 1 unit at time t or more consumption at time t s+ ,  

and send the time period to 0, the approximation used in the text shows that the marginal 

interest rate converges to  

 exp( ( ))t s
ρ η

ρ η
ρ

+
+ Γ − + . 

Proof of Proposition 3 

Proposition 3: Set  
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and 0a  is optimal for B B≤  , Fa is  optimal for B B B≤ ≤ , and 1a  is optimal for 

B B≥ . 

Proof:   

 

1)  As worked out in the text, the payoff to F  is  
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2) If 0a  (don’t avoid, don’t purchase) is chosen, the direct utility is 0, and the reduced 

form utility is the temptation cost incurred in the second period: 

0( ) (1 )max{0, }V Bγδ δµ δµ= − − −a . 

 

3) If 1a  is chosen, the direct utility is 2(1 )( )Bδ δ δ− − , while the cost of self-control is in 

period 2 and is (1 ) min{0, }Bγ δµ δµ− − −  – self-control is needed only when the short-

run player does not want to purchase. Thus 

1( ) (1 ) ( ) (1 )min{0, }V B Bδ δ δ γδ δµ δµ= − − + − −a  

 

If B δµ≤  as noted in the text the optimum is not to purchase and there is not temptation 

cost. So it is also not optimal to avoid in the first period, and the optimum is 0a . Next 

suppose that B δµ>  and consider the period 2 choice assuming the avoidance cost was 

not paid. As noted, if the purchase is not made, the average value from period 2 on is 

(1 )( )Bγ δµ δµ− − − , while if it is, the average value is (1 )( )Bδ δ− − . So the optimum 

is not to purchase when 
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Next observe that since B δµ>  the present value of utility from avoiding is given by  

 ( )(1 ) (1 ) (1 )( )F F Bδ γ δµ δµ δµ δµ− − − − + − − .  

Then 0( ) ( )FV V≥a a  if and only  
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Since 0B δµ− >  this implies there is a range of sufficiently small F  where Fa  is 

better and a range of F  so large that 0a  is better.  

Finally, 
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We conclude that Fa  is best when  
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Straightforward algebra shows that there is a non-empty interval of B where Fa
	

 is best 

when  

  
2 2
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If *F F>  it is not optimal to use Fa ; in this case the optimum is determined from the 

condition for 0 1( ) ( )V V≥a a  above. If *F F≤ , and if B B≤  then 0( ) ( )FV V≤a a  

and 1 0( ) ( )V V≤a a , so 0a  is optimal; if B B B≤ ≤  then 0( ) ( )FV V≥a a  and 
1( ) ( )FV V≥a a , so Fa  is optimal; while if B B≥  then 1( ) ( )FV V≤a a  and 

1 0( ) ( )V V≥a a , so 1a  is optimal. Finally note that , *B Bδµ ≤ , so that the case 

B δµ≤  where 0a  is optimal is included in this result. 

� 

Timing of Temptation 

 Here we consider how the timing of the foregone utility shock n∆  within a period 

interacts with linear replenishment. In particular we find that the timing does not matter 

when periods are small, though of course it does matter when periods are longer. 

 

Model 1: ( )t t tW w Wκ= − − ∆�� , where t∆�  is a constant flow during the period. The 

solution is 1/ exp( )( / )tW w t w k wκ κ= − ∆ − − − ∆ −� � . For one period this gives 

2 1 0/ (1 )( / ) (1 )w w w w wκ κτ κ λ λ ω τ≈ − ∆ − − − ∆ − = + − − ∆� � � . 

 

Model 2: If τ∆�  is incurred at the beginning of the period, then cognitive resources jump 

down immediately from 1w  to 1 1w w+ = − ∆ , and then follows ( )t tW w Wκ= −� . Hence 
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2 1

2
1

1

exp( )( )

(1 )

(1 )

w w w w

w w

w w

κτ τ

λ λ τ κτ

λ λ τ

= − − − − ∆

≈ + − − ∆ + ∆

≈ + − − ∆

�

� �

�

. 

Note that this is the same as if the resources were withdrawn at the end of the period. 

 Turning from jumps to flows, we observe that if the shock ∆  is fixed rather than 

proportional to ∆�  then the difference between the terminal stocks is of order τ  rather 

than 2τ . However, this is consistent with the difference between discrete shocks and 

flows. In the case of shocks on order τ∆�  there may be order 1/n τ=  shocks per unit of 

calendar time, so that the overall error per unit of calendar time goes to zero when the 

error per period is of order 2τ . However, fixed shocks ∆  cannot occur too frequently, 

typically only a finite number K  of such shocks per unit of calendar time. Hence if the 

per period error is of order τ , the error over calendar time is of order Kτ , which 

vanishes as the length of period goes to zero. 

Proof of Theorem 5  

Theorem 5: For any model with linear benefit γ , depletion and replenishment λ    

define 

 
(1 )

1 (1 )

δ γ

δ λ

−
Γ =

− −
. 

Then if a  is a solution to the linear model with parameter Γ  then it is a solution to the 

( , )λ γ  model in which actions are independent of nw  and all such solutions to the ( , )λ γ  

model are solutions to the Γ  model. 

Proof: Recall that n n nw w= − ∆� . With linear replenishment 

1 ( ) ( )n n n n n n nw w w w w w wλ λ+ = + − = − ∆ + − + ∆� � . Define the willpower deficit 

as n nD w w= − , then 1 (1 ) (1 )n n nD Dλ λ+ = − + − ∆ . Hence 

 '
1 1 '' 1

(1 ) (1 )
nn n

n nn
D Dλ λ+ =

= − + − ∆∑ . 

Recall that the average value of cognitive resources in the linear case is 

0
(1 ) n

n
M wδ δ γ

∞

=
= − ∑ .  
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It follows that the total value of cognitive resources is 
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Hence if we define 

 
(1 )

1 (1 )

δ γ

δ λ

−
Γ =

− −
 

we see the equivalence to the simple linear model without replenishment. 

� 

Proof of Proposition 7 

Proposition 7: Suppose there is increasing marginal cost of self control and there is 

strictly partial linear replenishment, 0 κ< .   Then there is 0τ >  such that if τ τ< ,  

there are 0P Pτ τ> >  such that it is optimal to resist forever if P Pτ> , it is 

optimal to resist until period ˆ 1∞ > >�  then take if P P Pτ τ> > , and it is 

optimal to take immediately if P Pτ > .  Let 0 0,P P  denote the limits as 0τ → . Let sW  

be the solution to the differential equation 

 ( ) ( , 0)( )t t t

f
W w W W Sκ ρ η

∂
= − + +

∂∆
� , 

and let W∞  be the solution to  0 ( ) ( , 0)( )
f

w W W Sκ ρ η∞ ∞
∂

= − + +
∂∆

.  Then 

 ( )
0

0
( ) '( ) ( , 0)t f

P S e m W W dtρ κρ η
∞

− +
∞ ∞

∂
= − +

∂∆∫ , 
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( )

0
0

( ) '( ) ( , 0)t f
P S e m w w dtρ κρ η

∞
− + ∂

= − +
∂∆∫  

and if 0 0P P P> >  then 0
ˆˆ lims τ τ→= �  is finite and strictly positive, and is 

determined by  

 ( )
ˆ ˆ

0
( ) '( ) ( , 0)t t

s s

f
P S e m w e W W dtρ κ κρ η

∞ − + − ∂
= + −

∂∆∫  

Proof: Suppose the agent resists for �  periods then gives in. Let nw
�  be the corresponding 

time path of cognitive resources. Note that this is a weakly decreasing function of � , 

strictly decreasing for n > � . The resulting average value is  

 ( )1
1 10

(1 ) ( ( ,(1 )) ) ( ( ))n n
n nn n

m f w S m w Pδ δ δµ δ δ
− ∞

+ += =
− − + +∑ ∑� � � �

�
, and  

the bigger is �  the smaller is the first term and the larger is the second (recall that P  is 

negative). This implies that a necessary condition for an optimal �  is that the value for 

1+�  is no bigger, and that a sufficient condition for 1=�  optimal is that the value for 

1+�  is lower. Let us look at the value at �  minus the value at 1+�   
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Note that for n ≤ �  we have 1
n nw w +=� � , so we can write this difference as  

1
1 1 1 11

( )

(1 ) ( ( ) ( ( ,(1 ) ))) ( ( ) ( ))n
n nn

D

m w m f w S m w m w Pδ δ δµ δ
∞ − +

+ + + += +
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Observe that because there is partial replenishment nw +
�
�  strictly decreases in � .  

We now use the assumption of increasing cost of self control to conclude there is 

a τ  such that for τ τ<  each individual term in ( )D �  is strictly increasing in � , and 

hence that ( )D �  is strictly increasing.  The first term 

1 1 1 1( ) ( ( ,(1 ) )) ( ( , 0)) ( ( ,(1 ) )m w m f w S m f w m f w Sδµ δµ+ + + +− − = − −� � � �
� � � � , strictly 

decreases in 1w +
�
�   from  increasing marginal cost of self-control at 1A =  and the fact 

that (1 ) 0Sδµ− →  as 0τ → .  Since 1w +
�
�  decreases in � , these differences increase.  
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For the terms in the sum, since n  runs from 1+�  to ∞ , the arguments 

1
1 1,n nw w +

+ +
� �  have the form 1

' ',w w +
+ +
� �
� � � � , and the former decrease with � . The individual 

terms have the form 1
' '( ) ( )m w m w +

+ +−� �
� � � �  where 1

11 ( ,(1 ) )w f w Sδµ+
++ = −� �
��  and 

' 1
' 1(1 ) ( )i iw w w wλ+ − +

+ += − − −� � �
� � � . Putting this together, we have 
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where ' 1(1 )A λ −= − � . When τ  is small enough, increasing marginal cost of self control 

implies that this is decreasing in 1w +
�
�  and hence increasing in �  when τ  is small 

enough. 

 Notice that nw  is bounded below by the steady state. Hence D  is bounded above 

as a function of � . If P  is large enough in absolute value (it is negative) given all the 

other parameters then this expression is negative for all � , and it is optimal to wait 

forever; let Pτ  be the smallest such P  in absolute value. If P  is small enough in 

absolute value, this expression is positive for all s and it is optimal to take immediately, 

let Pτ  be the largest such P  in absolute value.  

 Next we assume that τ  is small, and show that P Pτ τ> . Observe that  
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Let  /( , ) ( / )/ (1 )sd s D s ττ τ δ δ= −  with /
/
tt

s s
W w τ

τ
≡ . Then  
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where  

 1(1 ) [ ( ,(1 ) ]s s n s s
s n s n s sW W W f W Sτ
τ τ τ τλ δµ+ −

+ + + +− = − − −  and ,  

 1(1 ) ( ))s n s
s n sW w w Wτ τλ −

+ += − − − .  
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The first term of d  converges to zero as 0τ → , and since ,m f  are differentiable the 

sum converges to  

 ( )

0
( ) ( ) '( ( )) ( , 0)t t

s s

f
d s S e m w e w W W dtρ κ κρ η

∞ − + − ∂
≡ + − −
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where sW  is the solution to the differential equation 

 ( ) ( , 0)( )t t t

f
W w W W Sκ ρ η

∂
= − + +

∂∆
�  

with initial condition 0W w= . Thus we have 0( ) lim ( , )d s d sτ τ→≡ . Recall that D  is 

strictly increasing, and that ˆ 1=�  is optimal if and only if (1) 0D ≥ . As 0τ →  this is 

equivalent to 
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( ) '( )
(0) ( ) '( ) ( , 0) ( , 0) 0

( )
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d S e m w w dt P wρ κ ρ η
ρ η

ρ κ
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Similarly  ˆ = ∞�  is optimal if and only if lim ( ) 0D→∞ ≤� � , and so when ( ) 0d ∞ ≤ .  

Finally, resisting for a while and the taking, that is, ˆ1 < < ∞� , is optimal if and 

only if ˆ ˆ( 1) 0, ( ) 0D D− ≤ ≥� � , hence ˆ( ) 0d s = . This gives the characterization of the 

optimum in the Proposition. Finally, the assumption that the marginal cost of self control 

is increasing  implies ( )d s  is strictly increasing, so  
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and hence P Pτ τ< must hold for all sufficiently small τ .  

� 

Proof of Theorem 8 

 Theorem 8: If ( , ) ( ( ) ( , ))k k kC Y U Y U Y= Γ −a a� �  then ( , ) ( , )k kC Y C Y=a a� . 

Proof:   We must show 
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We do so by showing that we can apply the principle of optimality for the short-run self  

to compute the opportunity cost as a sum of current and future foregone utilities, then 

rearrange the resulting sum to get the desired result. As noted in the text, the principle of 

optimality for the short-run self gives the opportunity cost as a sum of weighted 

increments: 
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Writing out the full average present value of opportunity costs we can in turn express that 

as a weighted sum of foregone utilities. 
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Set " '= +� � � . The final step is to rearrange this sum of increments to get the recursive 

cost 
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which is the desired result. 

 

 


