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Abstract

Few want to do business with a partner who has a bad reputation. Consequently
once a bad reputation is established it can be di�cult to get rid of. This leads on
the one hand to the intuitive idea that a good reputation is easy to lose and hard
to gain. On the other hand it can lead to a strong form of history dependence
in which a single bene�cial or adverse event can cast a shadow over a very long
period of time. It gives rise to a reputational trap where an agent rationally
chooses not to invest in a good reputation because the chances others will �nd
out is too low. Never-the-less the same agent with a good reputation will make
every e�ort to maintain it. Here a simple reputational model is constructed and
the conditions for there to be a unique equilibrium that constitutes a reputation
trap are characterized.
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�Glass, china, and reputation are easily cracked, and never well
mended.�

sometimes attributed to Benjamin Franklin.

1. Introduction

It is conventional to think that a good reputation is easy to lose and hard
to gain. One reason we suspect this might be the case is that if you have a
good reputation people will be eager to do business with you � hence if they
are cheated it will quickly become known. On the other hand if you have a
bad reputation few will do business with you so even if you are honest few will
�nd out. In such a setting it is intuitive that history matters. If an adverse
event causes a loss of reputation the di�culty of restoring it provides little
incentive for honesty, so the bad reputation will deservedly remain so long after
the circumstances that caused it are gone. On the other hand, there are reasons
for honesty besides reputation � if circumstances dictate honesty it will take a
long time before others �nd out, but once they do reputation will be restored �
and even after the circumstances dictating honesty are gone it will be desirable to
continue to be honest to avoid losing reputation. In other words, once reputation
is restored it will also persist. Consequently, two otherwise identical individuals
may �nd themselves with entirely di�erent incentives for honesty because of an
adverse or bene�cial event that happened in the distant past. There is, as we
shall see, a rather important hole in this intuition.

The goal of this paper is to develop a model that captures the intuitive idea
that di�erential observability leads to history dependence. In doing so we draw
key elements from the reputational literature. Following the gang-of-four3 we
augment the �normal� type with behavioral types � as in Mailath and Samuelson
[2001] these types are persistent but not completely so. We allow for good types
(bene�cial events) as in the gang-of-four and bad types (adverse events) as in
Mailath and Samuelson [2001] and Horner [2002].4 Finally, following an idea in
Fudenberg and Levine [1989] we assume that the short-run players face an entry
decision and that the information generated about long-run player behavior is
greater if the short-run player chooses to enter than if not. This observational
asymmetry leads to an important change from the Mailath and Samuelson [2001]
model where good and bad events are symmetric and reputation is equally easily
lost or restored.

This model captures the intuitive elements of persistent reputation if we
add an additional assumption concerning the short-run player. As is standard
in these types of models in each period a single representative short-run player
is a stand-in for a large population of players. This implies myopic behavior. It
also makes it di�cult to coordinate a response to events in the distant past. As

3Kreps and Wilson [1982] and Milgrom and Roberts [1982]
4As Cripps, Mailath and Samuelson [2004] show this is essential if we are to have reputations

restored as well as decline.
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indicated without an assumption in this direction, there is a hole in the basic
intuition of the �rst paragraph. If short-run players stay out and no information
is generated it eventually becomes likely that the long-run player has migrated
back to a �normal� type. It is now possible for the short-run players and long-
run player to coordinate. On a particular date it is common knowledge that
if the long-run player is normal honest behavior will take place and that the
short-run player will enter. This is then a self-ful�lling prophecy.5 It is not,
however, a very compelling one: it requires that both players agree about the
exact timing of events in the long-distant past and that they agree that �today
is the day.� To rule this out we assume that agents know only about events that
took place during their lifetime and that short-run player strategies and beliefs
are independent of calendar time.

Reputation theory has wide application to a variety of settings, but an impor-
tant motivation for this research is a puzzle in the political economy of culture
and institutions concerning the persistence of dysfunctional cultures. On the
one hand there is a substantial literature indicating that these can be quite
persistent. Acemoglu and Robinson [2001] give evidence for persistence on the
order of four centuries. Bigoni et al [2013] have evidence of a similar e�ect over
nearly nine centuries. Dell and Querubin [2018] have highly persuasive evidence
for persistence on the order of a century and a half.

On the other hand it cannot be that it is simply impractical to change social
and cultural norms: side by side with the survival of dysfunctional norms we see
abrupt change over periods of a few decades. Two central aspects of culture are
religion and language. Yet we observe that even these fundamental aspects of
society change over short periods of time. Prior to 1990 the country of Ireland
could well be described as Catholic. By the end of the decade the church lost its
central place in Irish life and the country could be better described as secular.6

With respect to language we may point to the remarkable example of Hebrew.
In 1880 Hebrew was not a conversational language. In 1903 there were perhaps
a few hundred Hebrew speakers. Within �fteen years more than 30,000 Jews in
Palestine claimed Hebrew as their native language.7

While religion and language are important elements of culture their role in
economic life is controversial. Are similar abrupt changes in economic culture
possible? Before asserting that it is absurd to imagine that Nigerians could
enrich themselves by replacing their own culture with Japanese culture, we
might ask how Japanese culture came to be what it is. In 1868 Japan had
a culture, technology, and standard of living similar to medieval Europe. By
1904 when Japan shocked the world by defeating a major Western military
power it had transformed itself into a modern industrial state. The stunning
transformation to a Western culture during the roughly 40 years of the Meiji

5In Acemoglu and Wolitzky [2012] this induces a cycle.
6See, for example, Donelly and Inglish [2010].
7See, for example, Bar-Adon [1972].
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era a�ected virtually every aspect of life in Japan.8

The reputational theory of this paper o�ers a possible reconciliation between
the ideas that dysfunctional norms may persist over a long period of time and
the fact it is not impractical to change them. Insofar as the importance of good
social norms for economic success revolves around good treatment of immigrants
and foreign investors there should indeed be a reputational e�ect. A region
that has a reputation for poor treatment of foreigners is unlikely to get much
immigration or foreign investment and so is unlikely to have thriving urban
centers of production and innovation. It then becomes the case that even if
treatment of outsiders is improved nobody is likely to �nd out, so indeed the
dysfunctional norm of cheating outsiders may be a form of reputation trap. I
do not mean to argue that a reputation trap is the only reason dysfunctional
cultures do not change: there are many costs associated with changing an entire
culture and in many circumstances it may not be worth it.9 Never-the-less given
the enormous disparity in income between Nigeria and Japan we may well ask
if the cost of change is the entire reason for its absence or whether a reputation
trap may not play a role as well.

In a sense the phenomena our theory endeavors to explain is connected
to the literature on poverty traps. That literature10 is based on a di�erent
mechanism: it is based on the idea that there are increasing returns to scale in
the accumulation of human capital. The remedies for this type of poverty trap
are quite di�erent than for a reputation trap. We do not have a great deal of
evidence about the relative importance of human and social capital, but we do
have the estimates of Dell and Querubin [2018] that only about one third of the
persistence of poverty is due to human capital so there is substantial scope for
a reputational mechanism.

A model that does lead to a reputational trap that of Board and Meyer-
ter-Vehn [2013]. In that model there is a continuous reputation variable and in
their bad news case if reputation falls below a threshold the �rm gives up and
shirks. The mechanism, however, is quite di�erent than here: the delay that
discourages e�ort when there is a bad reputation arises not for informational
reasons but because of a lag between investment and the improvement of product
quality. In that sense the model is more akin to poverty trap models than
to the �pure� reputational trap analyzed here. The type of endogenous delay
brought about by observational asymmetry has been studied by Ordonez [2007].
That paper is oriented towards a di�erent set of issues than discussed here:
it examines how over and under investment in signal acquisition depends on
reputation. The mechanism here is also quite di�erent than the �bad reputation�
mechanism in Ely and Valimaki 2003 and Ely, Fudenberg and Levine [2008]
where unraveling occurs because of a temptation to take a bad action to preserve
a good reputation: in that case there is no good equilibrium at all.

8See, for example, Jansen [2002].
9See, for example, Dutta, Levine and Modica [2019].

10See, for example, Azariadis and Drazen [1999].
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Like the results here much recent work on reputation has focused on �nding
equilibria rather than computing bounds. However, unlike here, mixed strategies
have played a key role. Mathevet, Pearce and Stachetti [2019] examine an
information design problem where the behavioral type mixes. In Phelan [2006]
it is the normal type that mixes. This leads to trust that is only gradually
regained, but it does not lead to a reputation trap.

The reputational ideas here are also related to the literature on self-con�rming
equilibrium.11 In that literature also a trap can arise because of the di�culty of
drawing inferences about events that are rarely seen. Here we incorporate that
idea into a model of rational Bayesian learning with imperfect observability and
the uniqueness of equilibrium in our model enables us to draw sharp results.

I can summarize the main results of the paper by indicating the types of
equilibria that occur as the cost of honesty is lowered. When the cost is very
high there is a unique equilibrium in which the normal type is dishonest. There is
then an intermediate range of costs in which there is a unique equilibrium that is
a reputation trap. This is the crucial new �nding in this paper. For lower costs
there is a unique pure strategy equilibrium and two types of mixed strategy
equilibria. Depending on the discount factor and rate at which information
spreads the mixed strategy equilibrium may be a reputation trap, or it may be
that there is a range of costs for which there is a unique equilibrium in which
the normal type always invests. Regardless, once cost is low enough equilibria
in which the normal type always invests co-exist with mixed equilibria. As the
mixed equilibria do not have a reputation trap this simply con�rms that if the
cost of honesty is low enough there is no reputation trap while for intermediate
levels of cost there is only a reputation trap.

2. The Model

A dynamic game is played between overlapping generations of �nitely lived
players. There are two player roles: player 1 is a long-run player who lives many
periods and player 2 represents a mass of short-run players who live a single
period. Each period t = 1, 2, . . . a stage game is played. In the stage game
long-run player must �rst choose whether or not to make a costly investment.
Let a1 ∈ {0, 1} denote the decision of the long-run player with 1 meaning to
invest and the cost being ca1 where 0 < c < 1. The short-run player moves
second and without observing the investment choice of the long-run player12

decides whether to enter a2 = 1 or stay out a2 = 0. The short-run player
receives utility 0 for staying out, utility −1 for entering when no investment has
been made and utility V > 0 for entering when the investment has been made.
There are three privately known types τ ∈ {b, n, g} of long-run player where
g means �good� (a bene�cial event), b means �bad� (an adverse event), and n
means �normal.� Player type is �xed during the lifetime of the player. The

11See, for example, Fudenberg and Levine [1993] and Sargent, Williams and Zha [2006].
12Meaning the game is simultaneous move.
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good and bad types are behavioral types: the good type always invests and the
bad type never invests. The stage game payo� of the normal type is given by
a2− ca1. Players care only about expected average utility during their lifetime.

The life of a long-run player is stochastic: with probability δ the player
continues for another period, and with probability 1 − δ is replaced. This re-
placement is not observed by the short-run player. When a long-run player is
replaced the type may change. The probability type τ is replaced by a type
σ 6= τ is Qτσε/(1 − δ) where Qτσ > 0. Note that the scaling by 1 − δ implies
that 1/ε is a measure of the number of long-run player lifetimes before a type
transition. We are interested in the case in which types are persistent - that is,
in which ε is small.

At the beginning of each period a public signal z of what occurred in the pre-
vious period is observed and takes on one of three values: 1, 0, N . If entry took
place last period the signal is equal to last-period long-run player investment. If
the short-run player stayed out last period then with probability 1 ≥ π > 0 the
signal is equal to last period long-run player investment and with probability
1− π the signal is N . Here we are to think of �1� as a good signal (investment
was observed), �0� as a bad signal (it was observed that there was no invest-
ment) and �N� as no signal. The key feature of the information technology is
that when the short-run player stays out less information is generated about
the behavior of the long-run player.

The game begins with an initial draw of the public signal z(1) and private
type τ(1) from the common knowledge distribution µzτ (1).

Players are only aware of events that occur during their lifetime. The long-
run player also knows their own generation T . Let h denote a �nite history
for a long-run player. A strategy for the normal type of long-run player is a
choice of investment probability α1(h, t, T ) as a function of privately known
history, calendar time, and generation T . A strategy for the short-run player is
a probability of entering α1(z, t) as a function of the beginning of period signal
and calendar time.

We study Nash equilibria of this game.
Throughout the paper we will assume generic cost in the sense that

c /∈
{
δ,

δ

2− π
,

δπ

1− δ + δπ
,

δπ(π − δπ)

(1− δπ)(1− δ)) + δπ(π − δπ)

}
.

Short-run Player Beliefs and Time Invariant Equilibrium

If players know calendar time, as indicated in the introduction, they can
use this information to coordinate their play in an implausible way. Hence we
wish to assume that short-run player strategies and beliefs are independent of
calendar time.13 Notice that this same assumption is implicit in the de�nition of

13See Clark, Fudenberg and Wolitzky [2019] for the consequences of a similar information
restriction in an overlapping generations setting.
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a Markov equilibrium, but is weaker since long-run player strategies may depend
on the entire lifetime history of events as well as generation and calendar time.

For brevity all references to a decision problem of the long-run player should
be understood to refer to the normal type. A strategy for a short-run player
is a now a time invariant probability of entering α2(z) ∈ [0, 1] as a function of
the beginning of period signal. Given such a strategy the normal type faces a
well-posed Markov decision problem. It depends only on the probability α2 with
which the short-run player enters. Let V (α2) denote the corresponding expected
average value of utility. First period utility is α2 − ca1. With probability δ
the game continues and the probability of the next signal is P (z′|z, a1) where
P (1|z, 1) = P (0|z, 0) = α2(z)+(1−α2(z))π and P (N |z, a1) = (1−α2(z))(1−π).
Hence the Bellman equation is

V (α2) = max
a1

(1− δ) [α2 − ca1] + δ
∑
z′

P (z′|z, a1)V (α2(z′)).

The set of best responses, for the normal type, then, is determined entirely by
the current state through α2(z). Hence at time t with signal zt any best response
of the normal type α1(yt, t, Tt) must lie in this set. Time invariant beliefs of the
short-run player about the investment probability of the normal type, which we
denote by α1(z), are then a weighted average of the best responses α1(yt, t, Tt)
- and so must also be a best response and lie in this set.

Prior to observing the signal zt the short-run player at time t has beliefs
about the joint distribution µzτ (t) from which the signal and type of the long-
run player are drawn. After observing zt short-run player beliefs about long-run
player type are given by the conditional probability µτ |zt(t). This together with
beliefs about the normal type investment α1(zt) determines µ1(zt, t) the overall
beliefs about the probability of long-run player investment. The short-run player
strategy α2(zt) must then be a best response to those beliefs.

The evolution of µzτ (t) depends upon the initial condition µzτ (1) and the
beliefs of the short-run player about the probabilities with which earlier normal-
type long-run and short-run players chose actions α1(z), α2(z). It does not
depend on the actual choice of those actions or the earlier signals, none of
which are observed. In particular no action or deviation by the long-run player
has any e�ect on the evolution of µzτ (t). Letting −→µ (t) denote the vector with
components µzτ (t) the law of motion is −→µ (t+1) = A−→µ (t) where A is a Markov
transition matrix the coe�cients of which are determined by α1(z), α2(z) and
π,Q, ε.14 To have an equilibrium with time invariant beliefs it must be that
−→µ (t + 1) = −→µ (t) and this is true if and only if the initial condition µzτ (1) is
a stationary distribution of A. For time invariance we cannot have arbitrary
initial short-run player beliefs µzt(1), but only initial beliefs that are consistent
with the strategies of the players and the passage of time.

We take our object of study, then, to be time invariant equilibrium. This

14This is computed in the Appendix.
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is a Nash equilibrium in which the initial beliefs of the short-run players are
determined endogenously to be the stationary distribution that arises from the
equilibrium strategies. It is conveniently described as a triple (α1(z), α2(z), µzτ )
where α1(z) and µzτ are time invariant beliefs of the short-run player and α2(z)
is the strategy of the short-run players. The conditions for equilibrium are
that α1(z) is a solution to the Markov decision problem induced by the short-
run player strategy α2(z), that µzτ is a stationary distribution of the Markov
transition matrix A determined by α1(z), α2(z), and Q, ε, and that α2(z) is
a best response to beliefs about long-run player action µ1(z) determined from
α1(z), µzτ .

Let z(y) be the most recently observed signal by the long-run player in the
history y. We may conveniently summarize the discussion:

Theorem 1. If (α1(z), α2(z), µzτ ) is a time invariant equilibrium then the
strategies α1(y, t, T ) = α1(z(y)), α2(z, t) = α2(z) are a Nash equilibrium with
respect to the initial condition µzτ (1) = µzτ . Conversely if α1(y, t, T ), α2(z, t) is
a Nash equilibrium that satis�es the time invariant short-run player condition
that the short-run player equilibrium beliefs α1(z, t) = α1(z), µzτ (t) = µzτ and
equilibrium strategy α2(z, t) = α2(z) then (α1(z), α2(z), µzτ ) is a time invariant
equilibrium.

Hereafter by equilibrium we mean time invariant equilibrium.

3. Short-run Pure Equilibria

We �rst study short-run pure equilibria in which the short-run player's equi-
librium strategy is pure. The di�erent pure strategy equilibria are characterized
in the following Theorem. In reading the theorem, note that 1 − δ + δπ is a
weighted average of 1 and π so is strictly greater than π.

Theorem 2. For given V,Q there exists an ε > 0 such that for εmin{π, 1 −
π} > ε > 0 there is a unique short-run pure equilibrium. It is a strict Nash
equilibrium, and in particular the long-run player also uses a pure strategy.
The short-run player enters only on the good signal. There are three mutually
exclusive types of equilibria depending on c each corresponding to a di�erent
normal type long-run player pure strategy:

i. [bad] if c > δ the normal type never invests
ii. [trap] if

δ > c >
π

1− δ + δπ

the normal type invests only on the good signal
iii. [good] if

π

1− δ + δπ
> c

the normal type always invests.
Note that the boundary cases are ruled out by the generic cost assumption

and that (at least) both types of equilibrium exist in the boundary cases.
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The proof is outlined below with the detailed computations in the Appendix.
The equilibrium itself is relatively intuitive. The assumption that ε is small
means that types are highly persistent so the short-run player does not put much
weight on the possibility of the type changing. Given the possible strategies of
the long-run player the signal 0 indicates either a bad type or a normal type who
will not invest if entry is not anticipated. Hence it makes sense for the short-run
player not to enter in the face of bad signal. Similarly the signal 1 indicates
either a good type or a normal type who will invest if entry is anticipated, so it
makes sense for the short-run player to enter in the face of a good signal.

More subtle is the inference of the short-run player when the signal N is
observed. The short-run player can infer that the previous short-run player
chose not to enter - hence must have received the bad signal or was in the same
boat with the signal N. As a result while less decisive than the signal 0 the
signal N also indicates past bad behavior by the long-run player, so staying out
is a good idea.

For the long-run player the choice is whether to invest when entry is an-
ticipated and when it is not. The di�erence between the two cases lies in the
probability that investment results in a good reputation which we may denote
by p = 1 when entry is anticipated and p = π when it is not. It is useful to
consider the problem for general values of p: when the cost c is incurred there is
a probability p of successfully establishing a good reputation and gaining 1− c
in the future and probability 1− p of failing to establish a good reputation and
starting over again. Here the expected average present value of the gain from
investment is Γ = −(1− δ)c+ δp(1− c) + δ(1− p)Γ or

Γ =
δp(1− c)− (1− δ)c

1− δ(1− p)
.

If this is negative, that is δp(1− c) < (1− δ)c, then it is best not to invest and
conversely. Take �rst the case where information is revealed immediately, that
is p = 1. This is the situation most conducive to investment. The condition
for not wishing to invest is c > δ so when this is the case there will be no
investment. This is a standard case, corresponding to part (i) of the Theorem
in which the long-run player is impatient and does not �nd it worthwhile to
give up c for a future gain of 1 − c. In this case investment will only take
place only occasionally during bene�cial events when the good type invests for
non-reputational reasons.

When c < δ it is worth it to maintain a reputation when the short-run player
enters as indeed in this case p = 1. The remaining question is whether it is also
worth it to invest when the short-run player does not enter. In this case p = π,
and the condition for investment is that given in (ii) and (iii). If c is very small
then it is worth investing even when the short-run player does not enter. This
good equilibrium corresponds to the �usual� reputational case, for example in
Kreps and Wilson [1982], Milgrom and Roberts [1982], Fudenberg and Levine
[1989], Fudenberg and Levine [1992] or Mailath and Samuelson [2001]. Here
the long-run player is always is willing to invest. Occasionally an adverse event
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occurs and the bad type does not invest regardless of reputational consequences
so investment does not take place until another normal or good type arrives.

The new and the interesting case is the trap equilibrium in case (ii) where
δ > c so the cost of investment is low enough to maintain a reputation, but
c > π/(1 − δ + δπ) so it is not worth it to try to acquire a reputation. Here
we have strong history dependence. Depending on the history a normal type
will be in one of two very di�erent situations. A normal type that follows a
history of good signals, will invest, have a good reputation and have a wealthy
and satisfactory life with an income of 1−c. A normal type that has the ill-luck
to follow a history in which the last signal was bad or there was no signal will
not invest, will have a (deservedly) bad reputation, and have an impoverished
life with an income of 0. This we may think of as a reputational trap. The
only di�erence between these normal types is an event that took place in the far
distant past: did the last behavioral type correspond to an adverse or bene�cial
event? Looked at another way, adverse and bene�cial events, rare as they are,
cast a very long shadow. After a bene�cial event there will be many lives of
prosperous normal types - indeed until an adverse event occurs. Contrariwise,
following an adverse event normal types will be mired in the reputation trap
until they are fortunate enough to have a bene�cial event. Hence, for example,
an outside threat that causes people to pull together (a bene�cial event) may
have very long-term consequences indeed.

Observe that π/(1 − δ + δπ) is increasing in π so as π increases and news
spreads quickly the range of costs for the reputation trap diminishes and we are
more likely to see the �usual� good reputation case.

The Role of Behavioral Types

To better understand the role of behavioral types, consider their absence.
As usual the static Nash equilibrium - always stay out and never invest - is an
equilibrium. In case (i) of Theorem 2 this is the only equilibrium. For higher
discount factors both the case (ii) and case (iii) strategies are Nash equilibria,
although the only one that is subgame perfect is the case (ii) equilibrium in
case (ii). In the usual way the presence of good types eliminates the static Nash
equilibrium once the discount factor is high enough. The bad types, however,
are key in selecting between the (ii) and (iii) case equilibria. The presence of
behavioral types insures that the ergodic distribution is unique and that all
signals (except possibly N) are present - so acts somewhat like trembles. The
non-subgame perfect case (iii) equilibrium is eliminated in case (ii) and case (ii)
equilibrium in case (iii) because play must be optimal following a signal of no
investment. Most striking is the case (iii) equilibrium in case (iii). Despite the
fact that the normal types always invest it is optimal for the short-run player
to stay out on a signal of no investment: this is because such a signal indicates
a bad type.

Outline of the Proof

The proof of the main theorem involves the interplay between the strategy
of the long-run player and the beliefs of the short-run player. The detailed
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calculations are given in the Appendix through a series of Lemmas. Lemma 1
analyzes the optimum of the long-run player. It shows that regardless of the
strategy of the short-run player the long-run player must invest when entry is
is anticipated if she is willing to do so when entry is not anticipated. It shows
in addition that unless the short-run player enters on the good signal and stays
out on the bad signal the long-run player should never invest. This information
is subsequently used to rule out many combinations of long-run and short-run
player strategies.

The next series of steps are to characterize the ergodic beliefs of the short-
run player about the long-run player. Lemma 2 examines the marginal ergodic
beliefs of the short-run player about the type of long-run player. As these
transition probabilities are exogenous it is straightforward to show that these
beliefs do not depend on ε and are bounded away from zero.

The key to showing that the unique equilibrium strategy of the short-run
player is to enter only on a good signal is to characterize the ergodic beliefs of
the short-run player about the type of long-run player conditional on the signal.
Let B be the probability of the investment that makes the short-run player
indi�erent to entering, that is, BV = (1− B). Recall that µ1(z) is the ergodic
belief of the short-run player about the probability that the long-run player will
invest. If µ1(z) > B it is strictly optimal to enter, and if it is less than this,
strictly optimal to stay out. If we can show that

µ1(1) ≥ 1−K ε

min{π, 1− π}

and
µ1(0), µ1(N) ≤ K ε

min{π, 1− π}
for some positive constant K depending only on Q then it follows that for

K
ε

min{π, 1− π}
< min{B, 1−B}

it is strictly optimal for the short-run player to stay out on a bad or no signal
and to enter on a good signal. This then gives the main theorem with ε =
min{B, 1−B}/K.

The derivation of the bounds requires several steps. Lemma 3 shows that
to a good approximation the beliefs of the short-run player about the type of
long-run player are the same at the beginning of a period where the type may
have changed as they were at the end of the previous period. This enables us
to compute approximate conditional beliefs about types and signals from the
simpler problem in which types are persistent. We then want to apply Bayes
law to compute the probability of types conditional on signals. To implement
this we need to know a lower bound on the marginal probability of the signals:
in the case of the good and bad signal this follows from the fact that the good
and bad types are playing the good and bad action; the crucial case of no signal
is addressed in Lemma 4 using ergodic calculations simpli�ed by Lemma 3.
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Lemma 5 then uses Bayes law for the special case in which the long-run player
takes an action independent of signal (as is the case for the behavioral types).

At this point there are three possible strategies for the long-run player and
eight for the short-run. It is now possible to check each of the twenty four
combinations to �nd the ergodic beliefs and show that the only best response
for the short-run player to a best response of the long-run player is to enter on a
good signal and stay out for all others. Fortunately many combinations can be
checked at once. This is done in Proposition 1 using the previously established
bounds and partial characterization of optimal strategies.

Finally, now that we know the unique strategy of the short-run player, we
must calculate the best response of the long-run player: this is the computation
with Γ above.

4. Mixed Equilibria

Our �rst goal is to establish a su�cient condition for the pure strategy
equilibrium to be the only equilibrium.

Theorem 3. For given V,Q there exists an ε > 0 such that for επ2(1 − π) >
ε > 0 and

c ≥ δ 1

1 + δ(1− π)
.

all equilibria are in pure strategies.

Note that this theorem requires smaller ε than Theorem 2. Together with
that theorem it forms the main result of this paper.

The key question is how the condition for only pure strategy equilibria in
Theorem 3 overlaps with the three cases in Theorem 2. We state the comparison
as a corollary:

Corollary 1. For given V,Q there exists an ε > 0 such that for επ2(1 − π) >
ε > 0 and

i. [bad] If
c > δ

then there is a unique equilibrium and there is no investment by the normal type.
ii. [trap] If

δ > c > δmax

{
π

1− δ + δπ
,

1

1 + δ(1− π)

}
there is a unique equilibrium and it is a reputation trap.

iii. [good] If π > (1− δ)/δ and

δ
π

1− δ + δπ
> c > δ

1

1 + δ(1− π)

there is a unique equilibrium and there is always investment by the normal type.
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Case (i) is the not surprising result that when c > δ there is a unique bad
equilibrium..

Case (ii) is the important result: it says that there is a non-trivial intermedi-
ate range of c for which there is a reputation trap. Moreover, it shows that as π
is increased the range for which the reputation trap is the unique equilibrium is
reduced. This reinforces our earlier discussion of the reputation trap by showing
when it is the unique equilibrium.

The �nal result gives conditions under which there is an additional lower
range of c for which there is a good equilibrium.

Proof. Case (i) follows from 1 + δ(1− π) > 1. Case (ii) follows from π/(1− δ+
δπ) < 1. Finally, we may compute that π > (1− δ)/δ is equivalent to

1

1 + δ(1− π)
<

π

1− δ + δπ

in which case the range of unique equilibrium extends into case (iii).

Intuition of the Main Result

The important result is that there is a range of c for which there is a rep-
utation trap but no mixed strategy equilibrium. Why must this be the case?
The reason is that the equilibrium short-run player pure strategy of staying
out on a bad or no signal z ∈ {0, N}and entering on a good signal z = 1 pro-
vides the greatest incentive for the normal type to invest. If c > δ this is not
enough, so weakening the incentive to invest by mixing does not help and the
only equilibrium is the one in which the normal type never invests.

To understand why the short-run player strategy must remain pure even for
c < δ (but not too small) consider that at c = δ the normal type strictly prefers
to not to invest on a bad or no signal and is indi�erent to investment on a good
signal. When c is lowered slightly the normal type now strictly prefers to invest
on a good signal, while of course the strict preference on bad and no signals
remain. Can there be an equilibrium in which the short-run player mixes only
�a little?� That cannot happen on a bad or no signal since to get the short-run
player to mix the normal type would have to mix �a lot� and this in turn would
require the short-run player to mix �a lot.�

What about the good signal? Here with c a little less than δ �a little� mixing
by the short-run player gets the normal type back to indi�erence. Without types
this can be an equilibrium - but not with types. The reason is tied to the ergodic
distribution of types and signals. With the normal type not investing on a bad
or no signal once those states are reached the normal type will no longer get
the good signal. With the short-run player mixing on the good signal there is
a positive probability that the normal type will get no signal: this �drains� the
normal types from the good signal so that in the ergodic distribution of types
and signals conditional on a good signal it is extremely likely the short-run
player is facing a good type. Consequently, the short-run player will not mix on
a good signal - rather the short-run player will enter for certain.

12



The conclusion is that mixed strategy equilibria require the short-run player
to mix �a lot.� Formally it is shown in Lemma 14 that in any mixed equilibrium
the short-run player must be at least as likely to enter on no signal as on a
good signal. This provides substantially less incentive for the normal type to
invest than the short-run player equilibrium pure strategy in which the short-
run player is a lot less likely to enter on no signal than on a good signal. Hence
the value of c that is low enough to provide adequate incentive for investment is
higher for a pure strategy equilibrium than for any mixed strategy equilibrium.

Two Types of Mixed Equilibrium

We turn now to a converse of Theorem 3: that is when

c < δ
1

1 + δ(1− π)

are there equilibria that are not pure? Intuitively this cannot be the case for all
Q. If there are very few normal types then basically the short-run player ignores
them and plays a best response to the behavioral types - which is to say the pure
strategy of staying out on a bad or no signal and entering on a good signal. This
we know leads the normal type to best-respond with a pure strategy as given
in Theorem 2. Proposition 2 in the Appendix gives a precise result: it shows
if there are enough good types there is necessarily a pure strategy equilibrium.
This is not terribly interesting in itself: the case of interest is when they are
many normal types, but it does show that there is no converse to Theorem 3
without an assumption on Q. Hence we investigate the interesting case of many
normal types.

In addition to showing that there are mixed equilibria, we can say what they
look like. There are two types, single mixing and double mixing. In both types
of equilibrium in the bad state z = 0 there is no investment and the short-run
player stays out: α1(0) = 0, α2(0) = 0. In the good state z = 1 both players
strictly mix: 0 < α1(1) < 1, 0 < α2(1) < 1. In the single mixing equilibrium this
is the only mixing: in the state z = N the normal type invests and the short-
run player enters α1(N) = 1, α2(N) = 1. In the double mixing case equilibrium
mixing takes place also at z = N : the short-run player mixes exactly as in the
state z = 1,that is α2(N) = α2(1), while normal type invests with a positive
probability α1(N) > 0.

To state a precise result and also be clear about the order of limits, it is
useful to de�ne the notion of a fundamental bound. This is a number that may
depend on the fundamentals of the game π, V, δ, c but not on the type dynamics
Q, ε. Recall that B is the probability of investment that makes the short-run
player indi�erent to entry. The main result about mixing is then Proposition 4
which we restate here as a theorem:

Theorem 4. There exists fundamental bounds µ < 1 and ε > 0 such that for
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any Q with µn ≥ µ if εµπ2(1− π) > ε > 0 and

c < δ
1

1 + δ(1− π)

there is at least one single-mixing and one double-mixing equilibrium and no
other type of mixed equilibrium. For each type of equilibrium there is a unique
value of α2(1). Moreover, for z = 1 in the single mixing case and z ∈ {N, 1} in
the double-mixing case the equilibrium value(s) of α1(z) satis�es

|α1(z)−B| ≤ 1− µn
1− µ

.

Note that we do not guarantee a unique equilibrium of each type, but show
that if there are enough normal types then all equilibria of a given type are
similar and the mixing by the long-run normal type is approximately the value
that makes the short-run player indi�erent. The reason this is only approximate
is because the short-run player also faces an endogenous number of good and
bad types who are either investing or not.

How do the mixed equilibria di�er from the pure equilibrium? Roughly
speaking we can describe the pure equilibria as having three properties: the
signal is informative for the short-run player, reputation is valuable, and the
normal type of long-run player remains stuck in either a good or bad situation.
The mixed equilibria are quite di�erent: the signal is uninformative for the
short-run player, reputation is not valuable, and the normal type of long-run
player transitions back and forth between all the states.

Speci�cally, with the mixed equilibrium we have the following situation. In
every state the short-run player is facing mostly normal types. The normal type,
starting in state z = 0 will eventually have some luck, the short-run player will
not observe the long-run player, and the state will move to N . Here the normal
type invests with positive probability and the short-run player observes this
with positive probability so there is a chance of getting to the state z = 1. Once
there both players are mixing, so there is a chance of moving to either state
z = 0 or state z = N . Indeed, the only transitions that are not seen are moving
directly from z = 0 to z = 1 and in the single mixing case moving directly
from z = N to z = 0. The normal type transitions back and forth between
all the states. Because of this mixing the behavioral types play no role in the
inferences of the short-run player. This is similar to the cheap talk literature:15

the mixing of the long-run player e�ectively jams the signal of the behavioral
types, and reputation plays no role in equilibrium. These equilibria also have
the property that α2(N) ≥ α2(1): the short-run player is no more likely to enter
when there is a favorable signal than when there is no signal. This represents a
precise sense in which the �signal is jammed.�

Finally, we emphasize that for very low c there are always signal jamming

15See, for example, Crawford and Sobel [1982].
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equilibria: low c does not guarantee a good equilibrium.

Welfare

Is a mixed equilibrium good or bad for the long-run player? This is irrelevant
in the bad equilibrium case where c > δ as there is no mixed equilibrium there.
If π < (1− δ)/δ and

δ
π

1− δ + δπ
< c < δ

1

1 + δ(1− π)

then there is both a trap equilibrium and mixed equilibrium. The mixed equi-
librium is clearly good for a long-run normal type who is trapped with no
reputation - that type gets 0 while receives a positive payo� in the mixed equi-
libria. In this sense signal jamming is potentially good because it can alleviate
a reputation trap.

On the other hand, a long-run normal type with a good reputation gets
1 − c. The next result shows that in this case a double-mixing equilibrium is
unambiguously bad: expected average present value starting in the good state
is strictly less.

Theorem 5. In a double mixing equilibrium

V (α2(1)) <
1− δπ

1 + δ(1− π)
≤ 1− c.

Proof. From Lemma 15 in the Appendix

V (α2(1)) =
(1− δπ)α2(1)

1 + δ(1− π)α2(1)

which is strictly increasing in α2(1), so the �rst bound follows from α2(1) < 1.
The �nal inequality is a restatement of the condition for the existence of a double
mixing equilibrium from Theorem 4.

This has the following additional consequence. As δ → 1 regardless of initial
condition utility in the good equilibrium approaches 1−c. On the other hand the
Theorem shows that lim supV (α2(1)) is bounded above by (1−π)/(2−π) which
does not depend upon c. Hence for small enough c starting in the good state
the normal long-run player does strictly worse in the double-mixing equilibrium
than in the always invest equilibrium even as δ → 1. This result appears quite
di�erent than the long memory case analyzed in Fudenberg and Levine [1989]
and Ekmekci, Gossner and Wilson [2012].

To understand why this is, observe that with su�ciently long memory by
the short-run player the long-run player can foil a signal jamming equilibrium:
if the long-run player persists in investing Fudenberg and Levine [1992] show
that when there is a good type the short-run player must come to believe that
the long-run player will invest. To understand how the con�ict between the
conclusions for δ → 1 arises, observe that for any �xed length of time the
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Fudenberg and Levine [1992] bound requires the prior probability of the good
type to be su�ciently high. Here the length of time is indeed �xed - the long-
run player has only one period to convince the short-run player that there will
be investment. Hence, as Proposition 2 in the Appendix shows, and as the
Fudenberg and Levine [1992] result suggests, signal jamming is ruled out if the
prior probability of the good type is su�ciently high. Hence the result here that
equilibrium payo�s remain bounded away from the Stackelberg payo� of 1 − c
when the probability of the good type is too low is an example con�rming that
the Fudenberg and Levine [1992] bound must depend on the strength of prior
belief in the good type.

5. Conclusion

We have shown that for a non-trivial intermediate range of investment costs
there is a unique equilibrium and it is a reputation trap. If this reputation
trap is real we should ask the public policy question of how to get out of it.
For example, if Southern Italy is caught in a reputation trap, what might the
central government of Italy or the EU do to help? One possibility is to subsidize
the cost of investment: if the cost c is low enough then investment even with the
bad signal will be pro�table and - eventually - the trap will be escaped. Welfare
analysis of the model, however, indicates that this is probably not a good idea.
The long-run player already has the possibility of making the investment and
�nds it not worth while; if the money designated for an investment subsidy was
instead given to the long-run player the long-run player would choose not to
spend it on investment - and would be strictly better o�.

The model, however, points to another possible direction: if π could be
increased it would be much easier to escape the reputation trap.16 Here an
outside agency might have an advantage over the long-run agent having, per-
haps, greater in�uence on outsiders and information �ow to outsiders. Large
mega-sporting events such as a World Cup or the Olympics come to mind in
this context. By bringing large numbers of outsiders a cultural change is pub-
licized. Bearing in mind that these events are awarded many years before they
take place there is increased incentive for institutional change. One reason cities
and regions compete for these events is precisely in hopes of obtaining favorable
publicity. We need to ask, however, has this ever worked as a means of escaping
a reputation trap? Certainly to be e�ective the investment must actually take
place � hence the Olympics in Athens in 2004 or in Rio in 2016 simply con�rmed
what everybody already believed about those cities. In this context it must also
be emphasized that to be e�ective the increase in π must be large enough � it
must cross the threshold for which it becomes pro�table to invest on the bad
signal.

16In a broader sense this can be thought of as part of a policy of bribing or subsidizing
short-run players to enter. See, for example, Bose et al [2006]. Also relevant in this context
is Vellodi [2019] who considers the design of reviewing systems to encourage entry in the face
of queuing for �rms with good reputation.
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In the case of mega-sporting events there is an empirical literature and there
are positive examples. Not all of this literature is relevant: much of it focuses
on narrow issues such as tourism and local tax revenue, and venues with good
reputations (where there should be little or no e�ect) are lumped in with venues
with bad reputations (where there might be an e�ect). For a good overview of
this literature see Matheson [2006]. Strikingly, there is evidence from Rose and
Spiegel 2011 that mega-sporting events when they are combined with institu-
tional change have a substantial e�ect on international trade. Examples include
the Olympics awarded to China in 2001 combined with entering the WTO, the
Olympics awarded to Italy in 1955 combined with a series of reforms culminating
in joining the European Economic Community, the Japanese Olympics of 1964
combined with entry into the IMF and the OECD, the Olympics awarded to
Spain in 1986 combined with entering the European Economic Community, the
Korean Olympics of 1988 Games together with political liberalization, and the
Mexican 1986 FIFA World Cup combined with entry into GATT. Two other
non-sporting events that may have had a similar impact (but have not been
studied empirically) are the World Exposition in Chicago in 1893 and the 1997
opening of the Guggenheim Museum in Bilbao giving rise to a revival of that
city called in the popular press the �Bilbao e�ect.17�

17See for example �The Bilbao e�ect: how Frank Gehry's Guggenheim started a global
craze,� The Guardian, October 1.
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Appendix

For brevity and clarity only the results of lengthy computations are reported
here. The interested reader can �nd the computations themselves in the online
version of this appendix.

Problem of the long-run Player

We examine the problem of the normal type of long-run player. Recall the
Bellman equation

V (α2) = max
a1

(1− δ) [α2 − ca1] + δ
∑
z′

P (z′|z, a1)V (α2(z′)).

We may write this out as
V (α2) =

max
a1

(1−δ) [α2 − ca1]+δ [(α2 + (1− α2)π)V (α2(a1)) + (1− α2)(1− π)V (α2(N))] .

Lemma 1. The optimum for the normal type of long-run-player depends on the
state only through α2 and one of three cases applies:

(i) V (α2(1))− V (α2(0)) < c(1− δ)/δ: it is strictly not optimal to invest in
every state. In particular if α2(1) = α2(0) this is the case.

(ii) V (α2(1))− V (α2(0)) > c(1− δ)/(δπ): it is strictly optimal to invest in
every state

De�ning

α̃2 =
1− δ

δ(1− π) (V (α2(1))− V (α2(0)))
c− π

1− π
(iii) it is strictly optimal to invest if α2(z) > α̃2 and conversely. In particular

the strategy α1(0) > α1(1) is never optimal.
In addition
(iv) if α2(0) = 1 then it is strictly optimal not to invest in every state.
Finally, if the short-run player uses a pure strategy then the optimum of the

long-run player is strict and pure.

Proof. The argmax is derived from:

max
a1
−(1− δ)ca1 + δ (α2 + (1− α2)π)V (α2(a1)).

The gain to not investing is

G(α2) = (1− δ)c− δ (α2 + (1− α2π) [V (α2(1))− V (α2(0))] .

We then solve this equation form α2 to see when investment is and is not optimal.
Finally, we analyze best response of the long-run player when the short-run

player uses a pure strategy. From (i) and (iv) if α2(0) ≥ α2(1) it is strictly
best not to invest. That leaves only the case α2(a1) = a1, or rather two cases,
depending on α2(N). This is a matter of solving the Bellman equations for
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each case to determine the value of c (if any) there can be a tie. This are the
�non-generic� values listed in the text.

Ergodic Beliefs of the Short-Run Player

Next we examine the beliefs of the short-run player. For given pure strategies
of both players the signal type pairs (z, τ) are a Markov chain with transition
probabilities independent of δ and depending only on ε, π and the strategies of
the two players. Excluding the stateN in case the short-run player always enters
the chain is irreducible and aperiodic so it has a unique ergodic distribution µzτ .
We �rst analyze the marginals µτ and µz.

Lemma 2. The marginals µτ are independent of ε. Let µ = minτ 6=n µτ . Then
µ > 0, µ0, µ1 ≥ πµ, if α2(0) = α2(1) = 1 then µN = 0, otherwise if the
short-run player plays a pure strategy then µN ≥ (1− π)µ.

Proof. The type transitions are independent of the signals, so we analyze those
�rst. For ε > 0 we have µτ > 0 since every type transition has positive proba-
bility. This ergodic distribution is the unique �xed point of the 3× 3 transition
matrix A, which is to say given by the intersection of the null space of I − A
with the unit simplex. Since A = I +Qε it follows that it is given by the inter-
section of the null space of Qε with the unit simplex. As the null space of Qε is
independent of ε the marginals µτ are independent of ε as well.

For the signals we have µ1 ≥ πµg and µ0 ≥ πµb. If if a2(0) = a2(1) = 1 then
the state N is transient. If α2(1) = 0 then µN ≥ (1 − π)µg while if α2(0) = 0
then µN ≥ (1− π)µb.

It will be convenient to normalize so that max(µσ/µτ )Qτσ = 1. Next we
show how the conditional probabilities µz|τ can be computed approximately by
using the ergodic conditions for ε = 0.

Lemma 3. When z = N

µN |τ = (1− π)

(∑
y

(1− α2(y))µy|τ + εHNτ

)

when z 6= N

µz|τ =
∑
y

1 ((z = 1)α1(τ, y) + 1(z = 0)(1− α1(τ, y))) [α2(y) + π(1− α2(y))]µy|τ+εHzτ .

where |Hzτ | ≤ 2 for all z.

Proof. The idea is that the process for types is exogenous, so the stationary
probabilities can be computed directly. This enables us to �nd a linear recur-
sive relationship for the conditionals where the coe�cients depend upon the
strategies and the (already known) marginals over types. We then show that
when ε is small to a good approximation we can do the computation for ε = 0,
that is, ignoring the type transitions, with the result above showing how good
the approximation is for given ε.
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To apply Bayes Law we will need to bound marginal probabilities of signals
from below. The hard case is that of no signal where we must solve the equations
for the conditionals simultaneously. Here we analyze the short-run pure strategy
case. If the short-run player enters for both z = 0, 1 then no signals are unlikely
as they are generated only from type transitions, so we rule that out.

Lemma 4. Suppose α2(a1) = 0 for some a1 ∈ {0, 1}. Then

µN ≥
1− π

2

(
1− 4ε

π

)
µ.

Proof. Let τ be the type that plays a1. We have

µa1|τ =
∑
y

[α2(y) + π(1− α2(y))]µy|τ + εHa1τ

µN |τ = (1− π)

(∑
y

(1− α2(y))µy|τ + εHNτ

)
These imply the inequalities

µa1|τ ≥ π(1− µN |τ ) + [α2(N) + π(1− α2(N))]µN |τ + εHa1τ

µN |τ ≥ (1− π)
(
(1− α2(N))µN |τ + µa1|τ + εHNτ

)
.

Hence

µN |τ ≥ (1−π)
(
(1− α2(N))µN |τ + π(1− µN |τ ) + [α2(N) + π(1− α2(N))]µN |τ + εHNτ + εHa1τ

)
≥ (1− π)

(
π + (1− π)µN |τ + εHNτ + εHa1τ

)
.

It follows that

µN |τ ≥
1− π

2

(
1− 4ε

π

)
.

The result now follows from µN ≥ µN |τµτ ≥ µN |τµ.

Finally we compute bounds on beliefs about types that play the same action
independent of the signal. Here we combine bounds from the equations for the
conditionals with Bayes Law.

Lemma 5. A long-run type τ that plays the pure action a1 regardless of the
signal has

µτ |−a1 ≤
2

µ

( ε
π

)
and if α2(1) = 1 and α2(0) = 0 then a type τ that plays the action 1 regardless
of signal has

µτ |N ≤
8(

1− 4
(
ε
π

))
µ

( ε
π

)
.
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Proof. If long-run type τ plays the pure action a1 from Lemma 3 µ−a1|τ =
εH−a1τ ≤ 2ε. From Lemma 2 µ−a1 ≥ πµ and Bayes law then implies

µτ |−a1 ≤
ε2

πµ
.

For the second part we have from Lemma 3

µN |τ = (1− π)
(
µ0|τ + [1− α2(N)]µN |τ

)
+ (1− π)εHNτ .

µ0|τ = εH0τ .

Plugging in µN |τ ≤ (1− π)µN |τ + (1− π)εH0τ + (1− π)εHNτ so

µN |τ ≤
(1− π)4ε

π
.

From Lemma 4

µN ≥
1− π

2

(
1− 4ε

π

)
µ.

Hence Bayes law implies

µτ |N ≤
8ε

π
(
1− 4ε

π

)
µ
.

Short-Run Player Optimality

Recall that µ1(z) is the probability of a1 = 1 in state z and that B =
1/(V + 1) is the critical value of µ1(z) such that

Lemma 6. If µ1(z) > B the short-run player strictly prefers to enter; if µ1(z) <
B the short-run player strictly prefers to stay out, and if µ1(z) = B the short-
run player is indi�erent.

We next show that it cannot be optimal for the short-run player always to
enter. Set B ≡ µmin{π, 1− π}min{B, 1−B}.

Lemma 7. For ε < (1/2)B always enter a2(z) = 1 for all z is not an equilib-
rium.

Proof. By Lemma 1 always enter implies no investment by the normal long-run
player. As there are few good types at z = 0 we show that this forces the
short-run player to stay out there so the short-run player should not in fact
enter.

Lemma 8. For ε < (1/16)B the strict equilibrium response to never invest is
to enter only on z = 1 and do so with probability 1.
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Proof. As the normal and bad types never invest the signal z = 1 implies a
good type with high probability so the short-run player should enter there.
This means that the long-run player can have the signal z = 1, N only through
a type transition. In particular the bad signal is dominated by normal and bad
types so the short-run player should stay out. This in turn means that most of
the N signals are generated by normal and bad types, so the short-run player
should stay out there too.

Lemma 9. For ε < (1/16)B there is no equilibrium in which α2(0) = 1.

Proof. By Lemma 1 α2(0) = 1 implies never invest so by Lemma 8 α2(0) = 0 a
contradiction.

Lemma 10. For ε < (1/32)B the unique equilibrium response to always invest
is to enter only on z = 1 and do so with probability 1.

Proof. This is basically the opposite of Lemma 8. Now at z = 1 there are mainly
good and normal types so it is optimal for the short-run player to enter. While
at z = 0 there are mainly bad types so it is optimal for the short-run player to
stay out. Hence no-signal is generated by bad types from z = 0 so it is optimal
for the short-run player to stay out there too.

Lemma 11. If ε < (1/2)B and for some a1 we have α1(a1) = a1 then α2(a1) =
a1.

Proof. If α1(0) = 0 then from Lemmas 3 and 2 µ1(0) = µ0|gµg/µ0 = εH0gµg/µ0 ≤
2ε/(πµ). If α1(1) = 1 then 1−µ1(1) = µ1|bµb/µ1 = εH1bµb/µ1 ≤ 2ε/(πµ). Hence

for ε/π < Bµ/2 it follows that α2(a1) = a1.

Uniqueness of Short-Run Pure Equilibria

We de�ne an equilibrium response of the short-run player to a strategy of
the long-run player to be a best response to µzτ induced by the long-run player
strategy and itself.

Proposition 1. There exists an ε > 0 depending only on V such that for any
ε satisfying

ε >
ε

µmin{π, 1− π}
> 0

in any short-run pure equilibrium the short-run player must enter on the good
signal and only on the good signal. Moreover this is a strict equilibrium response.

Proof. We rule out all other possibilities:
(a) Always enter a2(z) = 1 for all z is not an equilibrium. By Lemma 7
(b) The unique equilibrium response to never invest is to enter only on z = 1.

From Lemma 7.
(c) A equilibrium response requires a2(1) = 1, a2(0) = 0. Any other strategy

satis�es a2(0) ≥ a2(1). From Lemma 1 this implies no investment by the long-
run player. Part (b) then forces 0 = a2(0) < a2(1) = 1 a contradiction.
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(d) The unique equilibrium response to always invest is to enter only on
z = 1. From Lemma 10.

This leaves only the strategy ã in which the long-run player plays a1 = 1 on
entry and a1 = 0 if the short-run player stays out. As we know that α2(1) =
1, α2(0) = 0 there are two possibilities α2(N) = 1 and α2(N) = 0. The former
is ruled out because it leads to primarily bad types at z = N , and the latter is
a strict best response by the short-run player because there are few good types
at z = N .

Mixing

Recall that all of the Lemmas concerning short-run optimality hold for ε ≤
B/32 (and the remaining Lemmas do not place restrictions on ε) where B =
µmin{π, 1− π}min{B, 1−B}. Recall also the notion of a fundamental bound:
it may depend on the fundamentals of the game π, V, δ, c but not on the type
dynamics Q, ε. De�ne the fundamental bound A ≡ π2(1 − π) min{B, 1 − B}
and observe that if ε ≤ µA/32 then also ε ≤ B/32. We shall assume ε ≤ µA/32
hereafter.

Lemma 12. There is no non-pure equilibrium with α1(1) = 1.

Proof. By Lemma 2 µ1|b = εH1b ≤ 2ε. Hence for ε < B/2 by Lemma 6 α2(1) =
1. Then by Lemma 2 µ1|n = µ1|n+

∑
y∈{0,N} α1(y) [α2(y) + π(1− α2(y))]µy|n+

εHzτ .I t follows that∑
y∈{0,N}

α1(y)µy|n ≤ 2(ε/π) so max
y∈{0,N}

α1(y)µy|n ≤ 2(ε/π).

Moreover for z ∈ {0, N} we have µz|g = εHzg ≤ 2ε. Hence

µ1(0) =
µ0|gµg + α1(0)µ0|nµn

µ0
≤ 2(ε/π)(µg + µn)/(πµ) ≤ 2(ε/π)/(πµ).

So for ε/π2 < Bµ/2 (this is why π2 appears in A) by Lemma 6 we have α2(0) =
0. This implies by Lemma 4 that

µ1(N) =
µN |gµg + α1(N)µN |nµn

µN
≤ 2(ε/π)(µg + µn)/µN

≤ 8(ε/π)

(1− π)
(
1− 4ε

π

)
µ
.

So when this is less than or equal B by Lemma 6 we have α2(N) = 0. For
ε ≤ A/8 this is

16ε

π(1− π)µ
≤ B

so holds for ε < µA/16 which was assumed.
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Lemma 13. In any equilibrium α1(0) = α2(0) = 0.

Proof. We already know this to be true in any pure equilibrium, so we may
assume the equilibrium is not pure. From Lemma 11 if α1(0) = 0 then α2(0) = 0
so we may assume this is not the case, that is α1(0) > 0. From Lemma 12 we
know that α1(1) < 1. It cannot be that the normal type is indi�erent at both
z = 0, 1 for then by Lemma 1 it must be that α2(1) = α2(0) = α̃2 so that
V1 = V (α̃) = V0 and that the normal type never invests in which case by
Lemma 8 we would have a pure strategy equilibrium. Hence either the normal
type strictly prefers not to invest at z = 1 and is willing to invest at z = 0 or
the normal type is indi�erent at z = 1 and strictly prefers to invest at z = 0.
In either case from Lemma 1 we must have α2(1) < α2(0).

The key point is that having the short-run player enter when there is no
investment is kind of like winning the lottery - you get something for nothing.
If that happens in the state 0 it is particularly good because you are guaranteed
that you get to play again. Since α2(1) < α2(0) we can write α2(0) = β + (1−
β)α2(1) where β > 0 meaning that in the state z = 0 there is a better chance
of winning the lottery. We will use this to show that V (α2(0)) ≥ V (α2(1)) so
that never invest is optimal and the equilibrium must be pure by Lemma 8.

Lemma 14. In any non-pure equilibrium 0 < α2(1) < 1, α1(N) > 0, and
α2(N) ≥ α2(1).

Proof. First suppose that α2(1) = 1. Since the short-run player must be mixing
and by Lemma 13 is not doing so at z = 0 the short-run player must be mixing
at z = N , that is, that 0 < α2(N) < 1. Lemma 12 implies that at z = 1 the
normal type does not strictly prefer to invest. Since α2(N) < α2(1) Lemma 1
implies that at z = N normal type strictly prefers not to invest, so α1(N) = 0.
Hence µ1(N) = µN |gµg/µN = εH0gµg/µN . As α2(0) = 0 by Lemma 13 it follows
from Lemma 4 that

µ1(N) ≤ 4ε

(1− π)
(
1− 4ε

π

)
µ

as the RHS this is less than B by assumption we have α2(N) = 0 a contradiction.
Next suppose that α2(1) = 0. By Lemma 13 we also have α2(0) = 0 so

by Lemma 1 the long-run player never invests. Hence α2(1) > 0 follows from
Lemma 8, a contradiction. We have now shown strict mixing the the short-run
player at z = 1.

Now we show that since the short-run player is strictly mixing at z = 1 then
α1(N) > 0. Strict mixing by the short-run player at z = 1 implies from Lemma
6 1 − B = 1 − µ1(1) =

(
[1− α1(1)]µ1|nµn + µ1|bµb

)
/µ1. From Lemma 3 and

Lemma 13 if α1(N) = 0 we have µ1|n ≤ α1(1)µ1|n + 2ε and µ1|b ≤ 2ε. Hence by

Lemma 2 1− µ1(1) ≤ 2ε/(πµ), so for 2ε/(πµ) < 1−B this is a contradiction.
Since α2(N) > 0 the normal type weakly prefers to invest at z = N . If

α2(1) > α2(N) by Lemma 1 this implies the normal type would strictly prefer
to invest at z = 1 contradicting Lemma 12.
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Proposition 2. For any Q with

µg >
B

B + (1−B)(π/2)

if ε ≤ µA/32 then all equilibria are pure.

Proof. From Bayes Law

µ1(1) ≥ µg|1 =
µ1|gµg

µ1|gµg +
∑
τ 6=g µ1|τµτ

≥ 1

1 + (1− µg)/(µ1|gµg)
.

From Lemma 3

µ1|g ≥ [α2(1) + π(1− α2(1))]µ1|g + [α2(N) + π(1− α2(N))]µN |g − 2ε.

The same Lemma implies µ0|g ≤ 2ε, so

µ1|g ≥ [α2(1) + π(1− α2(1))− π]µ1|g + π − 4ε ≥ π − 4ε.

Combining the two

µ1(1) ≥ 1

1 + (1− µg)/((π − 4ε)µg)
.

By Lemma 5 if
1

1 + (1− µg)/((π − 4ε)µg)
> B

or equivalently

µg >
B

B + (1−B)(π − 4ε)

then α2(1) = 1 so the result follows from Lemma 14 and the assumption that
ε < µA/32 ≤ π/2.

Signal Jamming

De�ne the auxiliary system with respect to 0 ≤ λ, γ ≤ 1 as

V1 = (1− δ)α̃2 + δ [(α̃2 + (1− α̃2)π)V0 + (1− α̃2)(1− π)VN ]

VN = (1− γ)(λ− c) + γV1

V0 =
δ(1− π)

1− δπ
VN .

Since in a mixed equilibrium we know from Lemma 12 that α1(1) < 1 so that at
z = 1 the long-run player must be willing not to invest. This system corresponds
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to not investing at z = 0, 1. From the contraction mapping �xed point theorem
this has a unique solution V1, VN , V0. De�ne the function ∆(α̃2) ≡ V1 − V0.

Lemma 15. We have

V1 =
δ(1− π)(1− γ)(λ− c) + (1− δ) [1− δπ − δ(1− π)(1− γ)(λ− c)] α̃2

(1− δπ − γδ(1− π)) + γδ(1− π)(1− δ)α̃2

strictly increasing in α̃2.

Proof. Here we simply solve the linear system and determine the sign of the
derivative of V1.

Lemma 16. ∆(α̃2) is strictly increasing. There is a solution 0 < α̂2 < 1 to

∆(α̃2) = ∆(α̃2) ≡ 1− δ
δ (α̃2 + (1− α̃2)π)

c,

it and only if

c < δ
(1− δπ − δ(1− π) [γ + λ(1− γ)])

1− δπ − δ2(1− π)
,

in which case it is unique.

Proof. Here solve V0 as a function of V1 from the system. We subtract this
from V1 and �nd that ∆(α̃2) is strictly increasing in V1. Hence we may apply
Lemma 15. Since ∆(α̃2) is decreasing there will be a unique intersection if and
only if ∆(0) > ∆(0) and ∆(1) < ∆(1). By computation we show that the �rst
condition is always satis�ed and the second is the condition on c given as the
result.

Proposition 3. If ε < µπ2(1− π) min{B, 1−B}/32 and

c ≥ δ 1

1 + δ(1− π)
.

all equilibria are in pure strategies.

Proof. Suppose that α1(z), α2(z) is a non-pure equilibrium. If the normal type
is willing to invest at z = 1 we take α̂2 = α2(1). If the long-run player strictly
prefers not to invest at z = 1 we show how to construct a 1 > α̂2 > α2(1) for
which the long-run player is indi�erent at z = 1 and strictly prefers to invest
at z = N . We show that 1− c ≥ V (α2(N)) ≥ V (α̂2) and use this to show that
at α̂2 we must have ∆(α̂2) = ∆(α̂2) for λ = 1. Applying Lemma 16 then yields
the desired condition.

Role of Types

It is useful at this point to recall the notion of a single mixing and double
mixing pro�le. In both pro�les α1(0) = 0, 0 < α1(1) < 1, α2(0) = 0 , 0 <
α2(1) < 1. In a single mixing pro�le α1(N) = 1, α2(N) = 1, while in a double-
mixing pro�le α1(N) > 0 and α2(N) = α2(1).
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Lemma 17. There exists a fundamental bound µ < 1 such that for any Q
with µn ≥ µ if for ε ≤ µA/32 a non-pure equilibrium is either a single- or
double-mixing pro�le.

Proof. The only things not covered in Lemma 12, 13, and 14 are α1(1) 6= 0 and
the result that α2(N) > α2(1) implies α1(N) = 1, α2(N) = 1.

For the �rst result, the idea is since µn is large there must be many more
normal types at N than good types. Since since α2(N) > 0 this means that
α1(N) cannot be too small, and this in turn implies that even though α1(1) = 0
there must be many more normal types at 1 then good types. If they not
investing then the short-run player should stay out contradicting the fact that
we already know α2(1) > 0.

For the second result we leverage the �rst to see that we must have α1(N) =
1. Moreover, since α1(1) < 1 there must be many normal types at z = 0, and
so at z = N . As these are all investing, it is optimal for the short-run player to
enter.

Lemma 18. In any single- or double-mixing pro�le if µn ≥ 1/2 and ε < (1 −
a2(1))(1− π)/12 then

µn|N ≥ 1− 1− µn
(1− α2(1))(1− π)/12

.

If in addition ε < α1(N)π(1− a2(1))(1− π)/24 then

µn|1 ≥ 1− 1− µn
α1(N)π(1− α2(1))(1− π)/24

.

Proof. The �rst result says that if α2(1) is less than 1 and if there are many
normal types there must be many normal types at z = N , as they are �owing
there from both z = 0 and z = 1. The second result leverages this to say that if
there are many normal types at z = N and α1(N) is large then there must be
many normal types at z = 1.

The next Lemma is simply an observation:

Lemma 19. A single mixing equilibrium corresponds to the auxiliary system
with λ = 1 and γ = δ and a double mixing equilibrium corresponds to the auxil-
iary system with λ = 1 and γ = 1. In particular in a single mixing equilibrium

V (α2(1)) =
(1− δπ)α2(1)

1 + δ(1− π)α2(1)

which is increasing in α2(1).

Proof. In the single mixing case this is just the Bellman equation. In the double
mixing case we use the fact that V (α2(N)) = V (α2(1)). The value V (α̃2) follows
from plugging into the expression for V1 in Lemma 15; that Lemma gives the
result that it is increasing.
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Proposition 4. There exists a fundamental bound µ < 1 such that for any Q
with µn ≥ µ if ε ≤ µA/32 and

c < δ
1

1 + δ(1− π)

there is at least one single-mixing and one double-mixing equilibrium and no
other type of mixed equilibrium. In both cases the equilibrium value of α2(1)
is the unique solution of ∆(α2(1)) = ∆(α2(1)) where λ = 1 and in the single-
mixing case γ = δ and in the double-mixing case γ = 1. Moreover, the equilib-
rium value of α1(z) satis�es

|α1(z)−B| ≤ 1− µn
1− µ

for z = 1 in the single mixing case and z ∈ {N, 1} in the double-mixing case.

Proof. From Lemma 17 we know there can be no other kind of equilibrium.
From Lemma 16 we know that

c < δ
(1− δπ − δ(1− π) [γ + λ(1− γ)])

1− δπ − δ2(1− π)

and from Lemma 19 with λ = 1 and γ = δ is a necessary condition for the
existence of single-mixing equilibrium and with λ = 1 and γ = 1 for the existence
of a double-mixing equilibrium. When λ = 1 the RHS is independent of γ
and given as the expression in the Theorem.This gives us a unique solution
0 < α̃2 < 1 for the equilibrium value of α2(1). The crucial fact is that ã2 arising
from the optimization problem of the normal type is itself a fundamental bound.

We must now show the existence of an α1(1) so that the short-run player
is indi�erent when z = 1 and weakly prefers to enter when z = N , and in the
double mixing case the existence of α1(1), α1(N) so that the short-run player is
indi�erent in both z = N, 1, and that any such strategic components satisfy the
required bound.

Recall that µ1(z) are the beliefs of the short-run player about the probability
the long-run player will invest. This is given as µ1(z) = µg|z + µn|zα1(z).

De�ne Ã(z, α1(z)) = µ1(z) − B. Hence the equilibrium requirement is that
Ã(1, α1(1)) = 0 and that in the single mixing case Ã(N,α1(N)) = 0 and in the
double-mixing case Ã(N, 1) ≥ 0. The complication is that µg|z and µn|z for
z ∈ {N, 1}both depend upon α1(1) and α1(N). As by the ergodic theorem the
ergodic distribution is continuous in α1(1) and α1(N) so are Ã(z, α1(z)) and we
will be able to apply �xed point argument.

Write Ã(z, α1) = µg|z − (1 − µn|z)α1 + α1 − B and observe that µg|z ≤
(1− µn|z). Hence Ã(z, α1) = α1 −B + Ã1(1− µn|z) with |Ã1| ≤ 2.

We now apply the �rst bound from Lemma 18. We know that α2(1) =
α̃2 a fundamental bound so we have Ã(N,α1) = α1 − B + Ã2(1 − µn) where
|Ã2| ≤ A2 and A2 is a fundamental bound. Hence for α1 − B ≤ −A2(1 − µn)
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we have Ã(N,α1) < 0. Taking A2(1 − µn) ≤ B/2 for α1 ≤ B/2 we also have
Ã(N,α1) < 0. We may restrict attention then to the region where α1(N) ≥ B/2
since there can be no equilibrium outside this region.

In the region α1(N) ≥ B/2 we may now apply the second bound from
Lemma 18 and �nd that Ã(1, α1) = α1 −B + Ã3(1− µn) where |Ã3| ≤ A3 and
A3 is a fundamental bound.

Take �rst the single-mixing case. Here if we take A2(1−µn) ≤ (1−B)/2 we
have Ã(N, 1) > 0 and we have Ã(1, α1) negative for α1−B < −A3(1−µn) and
positive for α1 −B > A3(1− µn) implying at least one solution Ã(1, α1) = 0 in
the interval |α1−B| ≤ A3(1−µn) and none elsewhere. That is the �rst required
result.

In the double mixing case we take the rectangle |α1(1) − B| ≤ A3(1 − µn)
and |α1(N)−B| ≤ A2(1−µn) and observe that Ã(1, α1), Ã(N,α1) are not both
zero outside this region. Moreover, the vector �eld (Ã(1, α1(1)), Ã(N,α1(N))
points outwards on the boundary of the rectangle. By the continuous vector �eld
version of the Brouwer �xed point theorem there is at least one point inside the
rectangle where they both vanish.
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