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The philosophy of equilibrium refinements is that the analyst, if he knows things
about the structure of the game, can reject some Nash equilibria as unreasonable.
The word “know” in the preceding sentence deserves special emphasis. If in a fixed
game the analyst can reject a particular equilibrium outcome, but he cannot do so
for games arbitrarily “close by,” then he may have second thoughts about rejecting
the outcome. We consider several notions of distance between games, and we
characterize their implications for the robustness of equilibrium refinements.
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1. INTRODUCTION

Much effort has been devoted recently to refining the notion of a Nash
equilibrium. Beginning with Selten’s [11, 12] notions of perfection, con-
cepts such as properness (Myerson [8]), sequentiality (Kreps and Wilson
[7]), and stability (Kohlberg and Mertens [5]) are often invoked or dis-
cussed in the literature. The guiding philosophy of these refinements is that
the analyst knows things about the structure of the game that enable him

* We thank Elon Kohlberg, Jean-Francois Mertens, Lloyd Shapley, two referees, and
especially Eddie Dekel for helpful discussion and comments. Financial support from the
National Science Foundation under Grants SES84-08586, SES85-09484, and SES85-09697
and from the Alfred P. Sloan Foundation is gratefully acknowledged.

* 354
0022-0531/88 $3.00

Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.



ROBUSTNESS OF EQUILIBRIUM REFINEMENTS 355

to reject some of the Nash equilibria as unreasonable. The point of this
paper is that the word know in the preceding sentence deserves emphasis.
Specifically, the analyst creates a model of the situation that is a simplifica-
tion and (he hopes) an approximation. Suppose that, in the model, the
analyst can reject a particular equilibrium outcome using the various
refinements, but he cannot do so for models that are arbitrary “close” to
the one created. Unless the analyst’s faith in the model is absolute, he may
be wise to have second thoughts about rejecting this outcome.

To study this “robustness” issue, we carry out the following program.
Fix a space of games and a notion of “closeness” for the games in the
space. For each game in the space, a Nash equilibrium is strict if, for each
player, the strategy prescribed is a unique best response to the other
players’ strategies. This is as formidable a refinement criterion as we can
think of, implying, for example, Kohlberg and Mertens’ [5] hyperstability.
Now ask: Which Nash equilibria of given game are limit points of strict
equilibria for nearby games? We call such equilibria near strict. Following
the discussion above, we would hesitate to reject any equilibrium that is
near strict, insofar as the sense of closeness specified captures our doubts
about the exact specification of the game.

In Section 2, we take for the space of games all normal form games over
a fixed (finite player and action) normal form, and we measure “closeness”
with the Euclidean metric on payoffs. The result is that every pure strategy
Nash equilibrium is near strict. (We also give a weakening of the strictness
requirement that accomodates every equilibrium, pure or mixed.) This is
hardly surprising, but then the various refinements of Nash equilibria are
motivated for the most part by the analysis of extensive games. In the rest
of the paper, we turn to extensive games with the following philosophy:
The analyst is certain (in his model) of the “physical” rules of the game:
who moves when, with what information about earlier moves, and so on.
That is, roughly, a (physical) extensive form is given. But the analyst may
entertain doubts about the players’ payoffs and/or their knowledge of the
payoffs.

The perturbations that arise from such doubts are considered in the
work on reputation in repeated games with incomplete information (see
Kreps et al. [6] and Fudenberg and Maskin [37]). Our theory differs from
this work on reputation effects in one important way. The previous work
considers the effect of a fixed perturbation on a family of repeated games of
varying lengths. The typical result there is that if the horizon is sufficiently
long, even outcomes that are not Nash equilibria of the unperturbed game
are Nash (and even near strict; see below) in the perturbed game. In this
paper the game is fixed, and the perturbation is allowed to vary (and made
to vanish). Hence only Nash equilibrium outcomes of the original game

can be near strict.
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Section 3 concerns the program for cases in which the analyst may be
unsure of the players’ payoffs himself but knows that these payoffs are com-
mon knowledge among the players. That is, an extensive form is fixed, the
space of games is the space of all payoffs for the extensive form, and
“closeness” is measured by the Euclidean metric on payoffs. We do not get
very clean results here. There do exist near strict equilibria that are not
strict, but the class of near strict equilibria has no apparent simple charac-
terization.

Sections 4 and 5 are the heart of the paper. Here we imagine that the
analyst has no doubts about the physical rules of the game, but is not quite
certain of payoffs, and is willing to admit the possibility that the players
themselves are not quite certain of each others’ payoffs. Put another way,
close to a given extensive game are games in which players entertain slight
doubts about each others’ payoffs, and our analyst is not prepared to reject
an equilibrium that cannot be rejected in games that are nearby in this
sense.

Section 4 deals with a definition of “closeness” under which every (pure)
Nash equilibrium of the original game is near strict. We begin with a
motivating example in Section 4.1. Technical details and the definition of
closeness are given in Section 4.2. This version of closeness allows each
player to be uncertain of his own payoffs and to believe that his opponents
may (with small probability) have better information about them than he
does. In this setting, an unexpected deviation by one player can signal that
all players should change their play, as a small ex ante uncertainty can
become large if an “unexpected” action is observed. In Section 4.3 we show
that, with this notion of closeness, all pure strategy Nash equilibria are
near strict. (Once again, mixed equilibria can be accommodated with a
minor weakening of the definition.)

In the Section 5 we consider a second notion of closeness, which requires
that each player’s additional private information relate only to his own
payoffs. If each player’s additional information must also be independent of
the information of the others, then an unexpected deviation by a player
signals only that his own payoffs are different than had been anticipated.
(In the literature on reputation in repeated games referenced above, the
perturbations used satisfy this restriction.) With this more restrictive notion
of closeness, not all (pure) Nash equilibria are near strict. However, all
pure strategy equilibria that are strictly trembling hand perfect in the
normal form are near strict, including some that are not subgame perfect.
We obain a converse by weakening slightly the notion of trembling hand
perfection. Finally, we consider relaxing the assumption that players’
additional information must be independently distributed. Here we obtain
a characterization of near strict equilibria that is like trembling hand
perfection, but where the “trembles” of various players may be correlated.
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The idea that small uncertainties of the kind we consider can render per-
fect some otherwise imperfect equilibria is not original to us. Van Damme
[13] and Myerson [9], among others, make this point. Our contribution
is to define and characterize more precisely the effects of various kinds of
uncertainties corresponding to various measures of closeness.

2. NorRMAL FORM GAMES AND PAYOFF PERTURBATIONS

Fix a finite player, finite action normal form. (We restrict attention
throughout to games with finitely many players, each of whom possesses
finitely many strategies.) Let i=1, .., I index the players, and let s,€ S;
index the pure strategies of player i. Denote []/_, S; by S. Let I" be the
space of games over this normal form: We take I'= R’ xS where for ye I,
(i, 5) is the payoff to player i under strategy s.

The set I" comes endowed with a natural topology, namely the Euclidean
topology. So does X, the space of mixed strategies for playeri, and
Z=T1'_, Z,. (We will use the term strategy profile to refer to elements
of 2).

Two strategies for player i, o; and o/, are said to be equivalent if, no mat-
ter what strategies o_,=(0,,..,0,_1,0;,,.--, 6;) are chosen by /s
opponents, all players receive the same utility whether i chooses g; or ol

A Nash equilibrium o = (g, ..., a;) for a given game 7 is called strict if,
for each player i, o, is I’s unique best response to the strategies o_,;=
(Gys s O;_ 15 Giv1» - 6;) Of the other players, up to equivalent strategies for
i.? Note that only an equilibrium in pure strategies can be strict (unless the
mixing is over equivalent strategies), according to this definition. Strict
equilibria satisfy all the standard refinements; in particular, a strict
equilibrium, taken as a singleton set, is hyperstable in the sense of Kohlberg
and Mertens [5].°

DEFINITION. A strategy profile o € X is near strict in the normal form for
a game 7y if there is a sequence of games y" (over the same normal form

! Equivalent strategies arise naturally when the normal form game is constructed from an
extensive form game, and one player has multiple information sets in sequence. Then if the
player takes an action at an earlier information set that precludes reaching a later information
set, the choice of the player at that later information set is irreleant. N.B,, it is the player
himself who precludes the later information set—equivalence of strategies does not depend on
the strategy choices o _; of other players.

2 That is, any equally good best response ¢; must be equivalent to o;,. We could equally well
speak of strictness in the reduced normal form, in which all equivalent strategies are identified.

3 Recall that Kohlberg and Mertens work with the reduced normal form. Conversely, any
pure strategy equilibrium that is, as a singleton set, hyperstable, will be strict. Hence as long
as we restrict attention to pure strategy equilibria, we could use “hyperstable as a singleton

set” instead of “strict.”



358 FUDENBERG, KREPS, AND LEVINE

as y) and a sequence of strategies {¢”} such that (i) lim, y" =y; (ii) for each
n, 6" is a strict equilibrium of "; and (iii) lim, ¢" = 0.

PROPOSITION 1. A strategy combination ¢ € X' is near strict in the normal
form for y if and only if it is a pure strategy Nash equilibrium for y.

The proof is quite simple. To see that any strategy profile that is near
strict in the normal form for y is a Nash equilibrium of y, use the upper
hemi-continuity of the Nash equilibrium correspondence. For the converse,
consider the perturbation that adds a small amount to the players’ utilities
at the outcome prescribed by the strategy in question.

It is easy to deal with mixed strategies, if one permits a small extension
to the definition of near strictness. Recall from Kohlberg and Mertens [5]
that for any given normal form game, an equivalent normal form game is
one in which pure strategies that are convex combinations of other pure
strategies are added to or deleted from the original game. Corresponding to
every strategy profile in an original game are (possibly many) strategy
profiles for a given equivalent game. Consider the following modification of
the definition of near strictness in the normal form.

DEFINITION. A strategy profile ¢ for a normal form game y is near strict
in equivalent normal forms for v if it corresponds to some strategy profile ¢
of an equivalent game y’ that is near strict in the normal form for y'.

PROPOSITION 2. A strategy profile o is near strict in equivalent normal
forms for v if and only if it is a Nash equilibrium of v.

Again the proof is easy. A simple example will illustrate the method of
proof. Consider the game depicted in Fig. 1 and the particular equilibrium
in which player 2 randomizes equally between L and R. In Fig. 2 we have
an equivalent game y’, with the particular equilibrium strategy for 2 added
as a new strategy for player2. In this game, this added strategy M
corresponds to the mixed strategy of player2 in the original game; the
Nash equilibrium in the original game corresponds to a pure strategy
equilibrium in the equivalent game, and we can apply the first proposition.

FIGURE 1
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The spirit of this extended definition is that players may derive a little
extra utility from playing a particular randomized strategy. This technique
can be applied at any point in the development to follow, to extend results
from pure to mixed equilibria. However, as both referees emphatically
observed, this is an artificial device of little content.* Hence we will, in what
follows, discuss only the near strictness of pure strategy profiles.

3. EXTENSIVE GAMES AND PAYOFF PERTURBATIONS

The result that every pure Nash equilibrium of y is near strict in the nor-
mal form (and, hence, is near hyperstable as a singleton set) is hardly sur-
prising, since we allow for any sequence of (vanishing) payoff perturbations
to the normal form game. Recall that, for most normal form games, every
Nash equilibrium satisfies the standard refinements; the refinements were
created initially to deal with games that arise from a specified extensive
form. Hence we might wish to permit, as perturbations to an initial exten-
sive game model, only perturbations that respect the structure of that
extensive form.

We can imagine that our outside analyst is concerned with a game over
an extensive form E, and he entertains no doubts about the physical rules
of the game so specified. But still our analyst may have doubts about the
full specification of the situation. He may, for example, be slightly unsure of
the payoffs to the players or their probability assessments concerning
nature’s moves. We will suppose that there is no question about the
probability assessments.” Thus we can ask: Fix an extensive form E and

4The referees suggested a somewhat more satisfactory treatment for mixed strategy
equilibria, in which one considers as a perturbation of a given game the same game in which a
player is “replaced” by a continuum of identical copies, as per Harsanyr’s [4] classic treat-
ment of purification. We will not follow that route here, except to suggest to the interested
reader that, when one comes to general elaborations in Section 4, one will have to be careful
with this if one is not to get as near strict all correlated equilibria, precisely in the spirit of
Myerson [9].

S The visual accounting tricks make this without loss of generality, if there is no question
about the support of those assessments.
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probability assessments for nature’s moves in E. Let I be the space of all
payoffs for players in E. For a given y € I', which strategy profiles are near
strict in the following sense?

DerFINITION.  Fixing ye I, a (pure) strategy profile ¢ of the game y is
near strict in the extensive form if there exist a sequence of payoffs y” —y
and (normal form) strict equilibria ¢” of y" such that 6" — 0.

We know from Section?2 that, for at least some games, there are
equilibria that are near strict in the normal form but not strict themselves.
Viewing a given normal form as a simple extensive form, we see then that
there will be profiles that are near strict in the extensive form but that are
not strict. It is easy to show that every strategy profile that is near strict in
the extensive form is a pure strategy Nash equilibrium. But not every pure
strategy Nash equilibrium over a given extensive form is near strict in the
extensive form. Consider the extensive game in Fig. 3. (Our system for
diagramming extensive form games is taken from Kreps and Wilson [7].)
It should be easy to see that the Nash equilibrium (L, D) is not near strict
in the extensive form; only (R, U) is.

Indeed, for some extensive games, no equilibrium is near strict in the
extensive form. The game depicted in Fig. 4 is an example: While (R, Uu)
and (R, Ud) (and, more generally, any randomization between these two
strategies) are very nice equilibria, neither is near strict: In fact, for an
equilibrium of an extensive game to be near strict in the normal form, it is
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necessary that any information set A that is not reached with positive
probability either (i) is precluded solely by the action at some earlier infor-
mation set of the player whose move it is at /4 or (ii) is a “dummy” infor-
mation set, where the player’s choice is irrelevant to everyone’s payoff. This
is a very simple manifestation of the type of problem that leads Kohlberg
and Mertens to define stable components of equilibria, and we could
similarly attempt to define near strict components. However, we are more
interested in the implications of the less restrictive notions of “closeness”
that correspond to the players not being quite certain of each other’s
payofis.

4. GENERAL ELABORATIONS

4.1. An Example

To motivate this development, we provide a simple example. (A similar
example is found in Van Damme [13].) Consider first the game in Fig. 3
and the equilibrium (L, D). Imagine an outside analyst whose thoughts
about this situation run as follows:

I know the particular physical rules of this game. Player 1 must first choose between
L and R, and player 2 must choose between U and D if R is chosen. And I'm fairly
sure that the payoffs are as in Fig. 3. But I'm not completely certain of this. I am
willing to admit that there is a small chance that the payoffs are quite different from
those shown. Moreover, it might not be common knowledge between the players
what those payoffs are. That is, the game may have incomplete information, in that
players do not know the precise payofs, although all the players will have priors

that give probability close to one for the payoffs in Fig. 3.

To model this, we introduce a game that is more elaborate than that in
Fig. 3, as follows. Nature moves first, selecting one of several “versions” of
the game. Each version is distinguished by having the same extensive form
as in Fig. 3 but may have different payoffs. Nature chooses one version
having payoffs close to those in Fig. 3 with probability close to one. Each
player has a partition over versions of the game, with each respective
player being told in which cell of his partition the true version lies.

One such elaboration is given in Fig. 5. Nature picks one of two versions.
The first, which occurs with probability 1 —e¢, has the same payoffs as in
Fig. 3; the second, which occurs with probability ¢, has very different
payoffs. Player 1 knows which version nature picks, while player 2 is not
told. Is this elaboration of the game in Fig. 3 very different from the original
game for small ¢? Our outside analyst, plagued by the sort of doubts
expressed above, might not be willing to rule out the possibility that the
players perceive the situation as being that in Fig. 5.
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The point of this example is now easy to make. For the game in Fig. 5,
the equilibrium (L, R,, D) is strict in the normal form, as shown in Fig. 6.
Moreover, it remains strict as we can decrease ¢ towards zero. This should
not be hard to see: Given that player 2 will play D, player 1’s choices at his
information sets are both strictly optimal choices. And, given the strategy
of player 1, player 2 is given the move only if nature picks version 2, which
renders strictly optimal the choice D by 2.

If we were to measure distance so that, as ¢ goes to zero, this game
approaches the game in Fig. 3, then we would conclude, in the spirit of
earlier discussion, that (L, D) in Fig. 3 is near strict. This is so even though,
in Fig.3, (L, D) is subgame imperfect. (Note that a nontrivial step is
implicit here: In what sense does (L, R;, D) approach (L, D) as & goes to
zero? We give a formal criterion below.)

With this as a prelude, we now develop a general treatment.

4.2. Elaboration Perturbations

We begin with a precise definition concerning when one game is a small
perturbation of another. We will not develop a formal topology on the

U D

L, | 12€,1€ | 12€, 1€

LR, | 1€, t2¢ | 1€, 1€
R1L2 2-3€ ,0 1-1+€
R1R2 2-2€ -€ -1+€ 1+€

FIGURE 6
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space of games, but instead we give a simple sufficient condition for games
to be close.

Fix an I-player extensive game of perfect recall, E. This prescribes a
game tree T (with nodes denoted by ¢) which is partitioned into sets of
nodes 7, that “belong” to the various players, some of which are initial
nodes we W, and terminal nodes z€ Z; an initial assessment p over W,
information sets ke H, with H(t) denoting the information set containing
the (nonterminal) node ¢; actions ae A(h) at each information set; and a
payoff function u: IxZ — R assigning utilities to all players.

The kind of perturbation of E that we have in mind is one in which one
of N possible “versions” of the game above is selected by nature at the out-
set, where each version has the game tree of the game above and, except for
initial uncertainty as to nature’s choice of version, the same information
structure. Versions are distinguished by the players’ payoffs. Players are
unsure (in a general sense) as to which version prevails. Such perturbations
of E will be called elaborations of E.

To formalize this, imagine a game E of perfect recall built up as follows.
A positive integer N is given, together with a probability distribution p on
{1,.,N}. In E, the game tree consists of an N-fold copy of T, or
Tx {1,.., N}; we use (¢, n) to denote the nth copy of the node . If player i
moves at (nonterminal) node ¢ in E (if 1€ T)), then i moves at (¢, n) for all
n; ie, T,=T;x{1,.., N}. The set of initial nodes consists of the N-fold
copy of W, with the probability of initial node (w, n) given by p(w) u(n).
The utility to player i at terminal node (z,n) is denoted by u(i, z, n).
Finally, information sets are composed as follows. For each player i, a
partition P; of {1,2,.., N} (with cells denoted by P/n)) is given, and
the information set in E with node (¢, n)€e T. is H(t)x P{n). Actions at
information sets are inherited in the obvious fashion.

The information structure bears some scrunity. Player i's exogenously
given information concerning which version n is chosen at the outset is
described by the partition P,. That is, if it is player 7’s turn out to move at
node (t, n), his knowledge about ¢ is given by H(r) and his knowledge
about n is given by P(n). Figures 3 and 5 illustrate the basic construction.
The game E in Fig. 5 consists of two version of E in Fig. 3. In the first
(upper) version, the payoffs are identical with those in Fig. 3. In the second
(bottom) version, they are quite different. Player 1 learns at the outset
which version is chosen; ie., P, is the discrete partition. Player 2 learns
nothing; ie., P, is the trivial partition.

We consider such elaborations E of a game E as being among the
possible perturbations of E. For E to be a “small” perturbation, we take it
to be sufficient that the payoffs in E should be, with high probability, from
some single version whose payofls are approximately those in E. Formally,
we pose the following criterion.
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Convergence Criterion. For a given game E, let {E*} be a sequence of
elaborations of E. To say that the sequence approaches E, it is sufficient
that

(i) there is a uniform bound on the number of versions of the
original game in each elaboration £* and a uniform bound on the absolute
values of the u*;

(ii) for each i, and z, lim, _, ., u*(i, z, 1) = u(i, z); and
(iii) lim,_ o p*(1)=1.

Conditions (ii) and (iii) state that, along the sequence, the probability that
nature picks a version in which payoffs are asymptotically the same as in
the original game approaches one. Note that a convergent sequence of
extensive form payoff perturbations of E correponds to a (trivial) con-
vergent sequence of elaborations.® The first part of condition (i) is probably
unnecessary to support a notion of closeness, but since we are giving a suf-
ficient condition for convergence, it cannot hurt. The second part of (i) is
quite important, however: Even if the probability of other versions is going
to zero, if there is no uniform bound of the payoffs of those versions, then
we can inflate the payoffs in other versions so that, in expected utility
terms, the players’ expected payoffs over all the versions are anything we
wish them to be. With the uniform bound on payoffs, however, (iii) implies
that in ex ante calculations of expected payoffs, only the first version
(which gives nearly the payoffs of the original game) will loom large in the
limit.

Is this a reasonable sufficient condition for closeness of games in the
extensive form? The considerations put into the mouth of our outside
analyst at the top of this section would argue that it is, although the reader
may already see how broad a class of small perturbations this allows.
Insofar as the refinements of Nash equilibrium deal with out-of-equilibrium
behavior, a small probability ex ante of very different payoffs may loom
quite large ex post. In what follows, we will see that this is so, and the
reader should consider carefully whether the uncertainty of an outside
analyst may be so great as this.

4.3. Near Strictness under General Elaborations

As in the previous two sections, we wish to identify (equilibrium)
strategies for a given game E that are near strict, in this case under the

6 Strengthening condition (ii) to require that payoffs in the first version exactly equal those
in the original game is vacuous: Given a sequence of elaborations satisfying (ii), we can
replace version 1 by two versions, called 1’ and 1", with payoffs in 1’ exactly as in the original
game, and specify that no player can distinguish between 1’ and 1”. With appropriate care in
picking payoffs in version 1” and the relative prior probabilities of the two, the new
elaborations would be strategically equivalent to the old ones.

-
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notion of closeness developed above. To do so, we must specify a mode of
convergence of a sequence of strategies for elaborations to a strategy for
the original game. This is not completely trivial, because strategies in an
elaborated game are much richer than strategies in the original game. Since
we take the point of view that the outside analyst is able to view only the
actions that are in the physical game given by E (and not those actions as
they are contingent on which version nature selected), one answer is to
look at the (marginal) distribution induced by strategies on endpoints of
the “physical” game. That is, one could compute the distributions induced
on Z, and require that they converge. Note that even if all elaborations are
trivial, in the sense that each has a single version of T, this gives us con-
vergence of strategies only at information sets that are reached with
positive probability. Hence this is weaker than the usual convergence of
entire strategies. We therefore use a slightly sharper convergence criterion:
We ask for convergence of behavior prescribed in an elaborated game at all
information sets / that contain the nodes (7, 1).

DEFINITION. A strategy o for the game E is near strict under general
elaborations if there is a sequence of elaborations of E, {E"}, that con-
vergences to E in the sense of the convergence criterion given above, and a
sequence of strict (normal form) equilibria {6*} for the respective
elaborations, such that the behavior prescribed by the é* at nodes (¢, 1) in
their respective games converges to behavior at node ¢ prescribed by o.

PROPOSITION 3. A pure strategy profile ¢ for the game E is near strict
under general elaborations if and only if it is a (pure strategy) Nash
equilibrium in E.

Proof. First we show that any strategy profile that is near strict under
general elaborations is a Nash equilibrium. Suppose that some o is near
strict but it is not a Nash equilibrium. Then there is some player i, strategy
é,, and & >0 such that u(i, (6;, 6 _;)) > u(i, o) +¢, where u(i, ¢) denotes the
utility to player i in the game if the outcome is determined by the strategy
profile o, and (d,, o _;) is the strategy profile composed of é; for i and g, for
all j#1i.

Fix a sequence of elaborations {E,} and corresponding strict equilibria
{6*} which converge to ¢ in the sense we are using here. Payoffs are
uniformly bounded in all versions, payoffs in version 1 of elaboration k
approach payoffs in the originally given game, and the prior probability of
version 1 approaches 1. Therefore i’s overall expected utility in elaboration
k approaches u(i, ). Suppose that there were some J, as above. Construct
6% so that, in elaboration k, at information sets (h, P(1)) for heH' i

i

follows the prescription of ¢;, and otherwise i follows the prescription of &7.
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As k grows, u(i, (6%)) converges to u(i, (6;, o _;)) so that for large enough £,
¢ would be better for i/ than 6% in elaboration k, a contradiction.

For the converse, we fix a (pure strategy) Nash equilibrium ¢ and
construct an elaboration £* as follows.

For each player i and pure strategy s, for i, design payoffs for i that make
strategy s, strictly dominant for player i throughout the course of play. To
do this, at each terminal node z e T, ask how many times m(z, s;) player i
has to deviate from s, if z is to be reached. (For example, when z lies along
a path that passes through no information sets of i, m,(z, s;)=0.) To give i
the strict incentive to follow s; at every opportunity, set /s payoffs at
—myz, s;).

Letting #.S; be the number of pure strategies for player i, in each
elaboration there are []/_, (#S,+ 1) versions of the original game. We
label these versions by (r,, ..., r;), where each r; is drawn from the set
S;u {0}. In version (ry, .., r;) of elaboration k, the payoffs to player i are
as follows:

(i) If r,eS;, then player i is assigned the payoffs described above
that make r; a strictly dominant strategy.
(i) If r,=0 and, for some j#1i, r;eS;, then player i is assigned
payoffs that make playing o; a strictly dominant strategy.
(i) If r;=0 and, moreover, r;=0 for all j, then player i is assigned
utility equal to u(i, -) — my-, ,)/k, where u is the originally specified utility
function and m, is the number-of-deviations function defined above.

The prior distribution on these versions is set as follows. Version
(ry, .., ;) of elaboration k has prior probability [T, u(r;), where u(r;)=
1/(k-#S,) if r,eS; and pfr;)=(k—1)/k if r;=0. Finally, for his initial
information concerning the version selected, at version (r,, ..., r;), player i is
told the value of r;.

This construction may seem quite complex, but it has a simple inter-
pretation. Each player i is either “crazy” of “sane,” and there are as many
different ways for i to be crazy as i has pure strategies. The overall chance
that i is crazy in elaboration k is 1/k, divided equally among the many dif-
ferent forms of craziness. A player is told whether he is crazy or sane and, if
crazy, the form that his craziness takes. Players’ “types” are selected
independently. (Note that the payoffs of one player will depend on the
types of the others, so the payoff perturbations are not independent.) If a
player is crazy according to a certain pure strategy, then the player has
payoffs that cause him to play that strategy at every available opportunity.’

7 This sort of construction, in which every strategy is played with positive probability, is
used by Fudenberg and Maskin [3] to obtain a robust folk theorem for repeated games with
long but finite horizons and small levels of incomplete information.
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If a player is sane and some other player is crazy (of any type), then the
sane player wants to follow the fixed Nash equilibrium strategy o; at every
available opportunity. Finally, if all players are sane, then payoffs are as in
the original game, with a small “kick” in favor of the fixed Nash
equilibrium strategies g,.

It should be evident that this sequence of elaborations converges to the
originally given game, according to the criterion we have given. We claim,
moreover, that in each elaboration, the following strategies &, are strict:
Player i follows g, if his initial information is r;=0, and he follows r, if his
initial information is some r;e S;. Once this claim is established, we will
have the proposition.

Suppose that some (pure) strategy 4, is one of I’s best responses to the
strategies {6;} of his opponents (in some elaboration k). We wish to
establish that 6, is precisely &; except possibly at information sets that 7’s
own actions preclude. By the assumption of perfect recall, the information
sets of i are ordered by precedence. Take any information set 4 for i that is
earliest in terms of precedence among all of /’s information sets in which 4,
is different from &, and in which s previous actions (which would be the
same under 6, and &, because this is an earliest information set) do not
themselves preclude A. If no information sets of i satisfy these conditions,
we are done. There are three possibilities to consider:

(i) The information set h belongs to a crazy variety of i. Because i
himself does not preclude h, and because every strategy profile of his
opponents is possible under their strategies in & (conditional on whatever
type is i), the information set 4 has positive prior probability. And at that
information set, any action other than that prescribed by &; does strictly
worse than &, (from then on). Hence there is a strategy for i strictly better
than 6,, which contradicts the assumed optimality of 6.

(ii) The information set 4 belongs to the sane variety of i and it
corresponds to an information set that is hit with positive probability
under ¢ in the original game and equilibrium. Then under § it is hit with
positive probability in one of two ways: Either we are in the version in
which everyone is sane, in which case following &, is a strict best response
for i (recall the “kicker” in defining utilities for the all-sane version), or we
are in a version in which someone else is crazy and i is sane, in which case
following & is a strict best response for the rest of the game. In either case,
there is a strategy for i strictly better than &, and again we have a
contradiction.

(The kicker perturbation to utility in the all-sane version would be
unnecessary as long as there is more than one player, since then we would
have that following 6, is at least weakly best in the all-sane version, strictly
best in every someone-crazy version, and the latter would have strictly
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positive probability. For one-player games, however, the latter has zero
probability.)

(iii) The information set A belongs to the sane variety of i and
corresponds to an information set that is off the equilibrium path in the
original game under the strategy o, and player i does not, by his actions,
preclude 4. Since there is positive prior probability of every other strategy
combination by /s opponents, there is positive prior probability that 4 will
be reached. Moreover, Bayes’ rule forces i to conclude that some one or
more of his opponents must be crazy at this point, at least insofar as they
all follow their parts of 6. Hence it is strictly better for i to follow 4, at this
point and henceforth, and we have the same contradiction as in the
previous two steps. Q.E.D.

Proposition 3 shows that any Nash equilibrium can be “justified” if the
players entertain the right kinds of doubts about each other’s payoffs.
Naturally, different forms of payoff uncertainty will justify different
equilibria, because the way in which a player responds to an unexpected
deviation by his opponents depends on the inferences that he draws from
this deviation. However, all of the Nash equilibria are “robust” in the sense
that, given a sequence of elaborations that approaches the original game
and justifies a given equilibrium, we can consider any “small enough”
further perturbations of the elaborated games and get the same conclusion.
Loosely speaking, every (pure) Nash equilibrium is justified by an “open
cone” of elaborations whose vertex is the original game.

5. ELABORATIONS WITH TYPES

5.1. Independent Types

In terms of our outside analyst story, Section 4 says that unless one is
certain that players will not draw unmodelled inferences about their own
payoffs from the deviations of their opponents, one should not reject any
(pure) Nash equilibrium. Suppose, though, that our outside analyst is
prepared to assert that the model as written captures all of the information
that players have about each other; he entertains (only) the possibility that
each player has unmodelled private information about his own payoffs.
Using language from the literature, the analyst entertains the possibility
that each player is one of several types (specified by payoffs), and each
player knows his own type. If it is also true that no player has information
(beyond the information possessed by the analyst, which all players have)
about the types of the others, then we will say that the types are indepen-
dent. In this case the class of small perturbations that the analyst would
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consider is smaller than in Section 4.2, and the set of near strict equilibria
that results might be smaller as well.

(Note that in the general elaborations considered in Section 4, a player’s
payoffs were not wholely determined by the player’s “type.” In particular,
in the proof of Proposition 3, the utility function of the “sane” type of
player i depends crucially on whether any other player was “crazy.” Hence
we did not meet the requirement that each player knows his own payoffs;
we will now require this. Initially, we also require that the types be
independently distributed; that is, that the prior u will have a product
structure.)

To see the force of this restriction, consider the game in Fig. 3 and the
Nash equilibrium (L, D). We made this equilibrium near strict by for-
mulating, in Fig. 5, a game in which player 1 received information that was
pertinent to player 2’s payoffs. Hence, in this elaboration, player 1, by
choosing R, was communicating to 2 that 2’s best choice lay with D. (This,
of course, supposes that 1 chooses L in the top version of the game.) But if
we supposed that player 1 could not be given information about 2’s payoffs
superior to the information that 2 receives, this would be impossible, as
player 2, moving in the information set that contains the node from the
high probability version, would know that U is dominant for him.

This is not to say that “elaborations with independent types” (to be
defined formally below) will not render near strict some equilibria that are
not themselves strict. Consider the games in Figs.7 and 8. In Fig. 7, we
have an equilibrium (Lu, D) which is subgame imperfect. In Fig. 8 we have
an elaboration of this game in which there is some uncertainty as to the
payoffs to player 1 only. (There are two possible types of player 1). Player 1
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is informed about his payoffs; player 2 gets no information. In this game,
(L, R,u,d,, D) is sequential; a more involved elaboration with independent
types will make it strict, which renders (Lu, D) near strict under such
elaborations.® The intuition is that in the alternative, bottom version of the
game, player | plays R, with positive probability and will continue with 4,,
because in the bottom version, R,d, is dominant. Player 2, then, given the
move, assesses probability one (at the L, action equilibrium) that the bot-
tom version is being played. As 1 will therefore continue with d, given the
chance, 2 chooses D.

With this example to provide motivation, we turn to a formal develop-
ment. First, we must modify the definition of an allowable elaboration.

DEFINITION. An elaboration is said to be an elaboration with indepen-
dent types if

(i) for each player i there is an integer N, such that the number of
versions in the elaborations is [, N;;

(ii) writing (j,, .., j;) as the index of one of the elaborations, where
ji€ {1, .., N;}, there is for each i a probability distribution x, on {1, .., N}
with p((Jy, - J)) =TL i)

(iii) there is for each i and je {1, .., N;} a payoff function v(i, z; j)
such that for each i and version (J,, ..., j;), #(i, -, (J15 - J)) =0, -5 Ji);

(iv) the information given to i if the true version is (j,, ..., j;) concer-
ning which version prevails is simply j;.

The same convergence criterion as in Section 4.2 is used, although we
now restrict to elaborations with independent types for perturbations.

DEFINITION. A strategy o for an extensive game E is near strict under
elaborations with independent types if there is a sequence of elaborations
with independent types of E, {E*}, that converges to E in the sense of the
convergence criterion, and a sequence of strict equilibria {*} for the
corresponding normal forms, such that the behavior prescribed by the é* at
nodes (¢, 1) converges to behavior at node ¢ prescribed by o.

To give our result, we need a further definition.

8In Fig. 8, (L,R,u,d,, D) is not strict because player I’s choice between u, and d, is
irrelevant given player 2’s choice of D. To make the choice matter, imagine that there is
independent uncertainty about 2’s payoffs, where, with small prior probability, 2 has A as a
dominant strategy. Think of an elaboration with four versions, two (for each type of player 1)
by two (for each type of player 2), where each player knows his own type but not the type of
the other. If this is too sketchy, the general definition and construction to be given in a
moment will clarify matters.
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DEFINITION. A (pure strategy) equilibrium ¢ of a normal form game y is
strictly perfect in the normal form if there is a sequence of totally mixed
strategies o* — o such that, for each player i and index k, o, is a strict best
response (up to equivalent strategies for i), to the other players’ strategies
prescribed by ¢*.°

Remark. Figure 9 shows that (Lu, D) is strictly perfect in the normal
form. The numbers in parentheses are “trembles” corresponding to a
sequence of totally mixed strategies converging to (Lx, D) such that Lx
and D are strict best responses for players 1 and 2, respectively, in the
reduced normal form. The key is that player 1 trembles onto Rd as often as
onto Ru, even though, having played R, player one “should” continue
with u."°

PROPOSITION 4. For a given extensive form E, every equilibrium o that is
strictly perfect in the normal form is near strict under elaborations with
independent types.

Proof. Fix a sequence of totally mixed strategies ¢* — o such that each
o, is a strict best response to each ¢*. In the kth elaboration, N, is set equal
to #S,, the number of pure strategies of player i. Payoffs for i in versions
corresponding to s; are as in the original game if 5,=0;, and they make s,
dominant otherwise. The marginal probability that type s; for i is chosen is
exactly that assigned to s; in % Hence these independent elaborations do
converge in the sense of the convergence criterion to the originally specified
game.

9 The term “strictly perfect” is used by Okada [10] to mean something quite different. In
the same vein, we later use the term “quasi-perfect” in a sense different from its usage in
van Damme [14].

10 Recall that Selten introduced perfectness in the agent normal form precisely to rule out
such correlated trembles.
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By construction, it is a strict Nash equilibrium in E* for each player i, if

sane, to play o,, and to play s; when crazy of type s;. This gives the result.
Q.E.D.

Given our. previous results, Proposition4 should not be surprising.
Imperfect equilibria that are perfect in the normal form correspond to
players inferring that, if an opponent has deviated from equilibrium play
once, he is likely to do so again. Such inferences can be justified if each
player believes that with small probability his opponents’ payoffs may be
quite different from payoffs that have high prior probability.

The converse to Proposition 4 is, however, false: Imperfect equilibria can
be near strict with respect to elaborations with independent types. The
problem is that the perfect equilibrium correspondence is poorly behaved
with respect to extensive form payoff perturbations. Consider the following
two-person simultaneous move game. If both players choose L, both
receive 1. If either choose R, then both receive zero. Only (L, L) is perfect,
but (R, R) is near strict under payoff perturbations in the extensive form:
Imagine that the payoff to (R, R) was ¢ for each player, holding the payoffs
for (L, R) and (R, L) at zero, and let ¢ approach zero.

One way to obtain a partial converse to Proposition 4 is to assume that
each player’s “main type” (the type corresponding to the main version of
the game) has exactly the payoffs given in the original game. That is, our
outside analyst assesses small probability that he has the payoffs off by
(possibly) a large amount, but he assesses high prior probability that he
has precisely the correct payoffs, and each player knows this. This class of
perturbations is not particularly interesting. Instead, we modify the
definition of a perfect equilibrium by taking its closure with respect to
payoff perturbations in the extensive form.

DEerFINITION.  Fix an extensive form E with payoff function u. A (pure
strategy) equilibrium ¢ of the corresponding normal form game is quasi-
perfect if there is a sequence of payoffs for the extensive form, {u™}, with
limit u, such that o is strictly perfect in each of the normal forms

corresponding to the u™.!!

Remark. Every perfect (pure strategy) equilibrium is quasi-perfect.

PROPOSITION 5. For a given extensive form game E, a pure strategy
equilibrium o is near strict under elaborations with independent types if and
only if it quasi-perfect.

11 Eddie Dekel has pointed out that this definition of quasi-perfection is equivalent to a
definition in which ¢ need be only (weakly) perfect in each of the normal forms corresponding
to the u™.
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Proof.'2 Suppose that ¢ is quasi-perfect. Let u be the payoff function for
E, and let u™ — u be the extensive form payoffs such that ¢ is strictly per-
fect in the normal forms corresponding to the u™. Write E™ for the exten-
sive form game with payoffs u™. From Proposition 4, there are elaborations
with independent types E™* of E™ and strategy profiles ™* for those
elaborations are such that 6™ are strict equilibria in the corresponding
normal forms, and ™ —¢ in k. Examination of the construction in
Proposition 4 shows that we can assume that the number of versions and
size of payoffs in the elaborations E™* are uniformly bounded in m and k.
For each positive integer N, take m,, large enough so that »™¥ is within
1/2N of u, and then take k y large enough so that (i) ky > N; (ii) the payoffs
in version 1 of E™**¥ are within 1/2N of u™; and (iii) the first version has
probability (N—1)/N or more in this elaboration. It is immediate that
{EmwknY is a sequence of elaborations with independent types approaching
(in N) E, with ¢™** a sequence of strict equilibria for those elaborations
that approaches ¢. Hence o is near strict.

To establish the converse, we begin with a piece of notation and a
preliminary observation. Fix an extensive game E, and let E be an
elaboration (with independent types) of E. If &, is a strategy for i in E, we
will write M, for the marginal distribution on strategies of i in E induced
by &, That is, averaging over all versions of the original game in E
according to u (or averaging over all of i’s personal types according to u;,
which gives the same result because types are independent) we compute the
probability with which i will be “observed” to play various strategies in E.

Now suppose that we have an elaboration E and a pure strategy profile
& which is a strict equilibrium for the normal form of E. We claim that it is
without loss of generality to assume that Mg, is totally mixed, for each i.
This is so because we can append to each player’s list of types a further
type for each pure strategy of i in E, where in the extra type for strategy s;,
i has s, as a dominant strategy. Because 4 is a strict best response for i in
&, we can, in the augmented elaboration (with the extra types) choose the
prior probability of those extra types to be sufficiently small (but still
strictly positive) so that the composite strategy for each player i, “Follow &,
for types from the original elaboration, and follow the dominant strategy
for the appended types,” is a strict best response to the composite strategies
for the others. (The constraint on the size of the probability of i's extra
types depends on the extent to which the other players’ strategies were
strict best responses.)

Suppose then that ¢ is near strict for E, and fix a sequence of
elaborations (with independent types) E* > E and corresponding strict

12 We thank Eddie Dekel for finding an error in an earlier version of this proof.
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equilibria 6* — ¢. By the observation just above, we can assume that M&*%
is totally mixed.

For each player i (holding ¢ fixed), partition the terminal nodes of the
original game tree into two sets: Let A, be those nodes which, for some
combination of strategies by i’s opponents, can be reached when i uses g,
and let B, be the complementary set. Using v*(i, z; 1) to denote the payoffs
to player i in the main version of the game in elaboration E* at node z,
consider the payoffs w*(i, z) for the original extensive form given by

w(i, z) =sup v’(i, z; 1), for zeA,,
jzk
and

wX(i, z) = inf v/(i, z; 1), for zeB,.
izk

We assert that ¢ is strictly perfect in the game with payoffs given by w*,
against the test sequence Mg-.

To see this, we compare the difference to i between playing ¢, and some
other (pure) strategy s, against M/ , when payoffs are given by w* with
the difference when the payoffs are v/(-, -; 1), for j>k. Write I1(z) for the
probability that terminal node z is reached when strategies are (o, M@’ )),
and write IT'(z) for this probability when the strategies are (s;, MG’ ;). We
wish, then, to sign

A=Y ((z)—IT'(2)) Wi, z) = ¥ ((z) - IT'(2)) v/(i, 2; 1).

Partition the terminal nodes z into four classes: (1) nodes that are reached
with positive probability under both ¢, and s,; (2) nodes such that
II(z)=1IT'(z)=0; (3) nodes with I1(z)>0=1IT'(z); and (4) nodes with
IT'(z) > 0 = I1(z). Note that classes (1) and (3) make up 4,, and classes (2)
and (4) make up B,. Now since o; and s; are pure strategies, 17(z) = IT'(z)
in class (1). Thus the terms making up 4 for z in class (1) net zero. For z in
class (2), the terms are zero. Thus we can rewrite

4= Y  HO@@)wG z)-v/(,z;1))— Y. IT(2) (WG, 2) —v/(, z; 1)),
z € Class(3) zeClass(4)

where we have used the facts that I7'(z) =0 for z in class (3) and 77(z) =0

for z in class (4). Since z in class (3) are in 4,, w* > v/ there, and conversely

for class (4). We conclude, then, that 4 is nonnegative.

But o, is a strict best response to MG~/ , when payoffs are given by v/. The
nonnegativity of 4 shows that the same is true when payoffs are given by
w*. Thus o is strictly perfect when payoffs are given by w*. And, since
v/(-, -; 1) converges to u, w* — u. Thus ¢ is quasi-perfect. Q.E.D.
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5.2. Personal Types

The effect of perturbations with independent types is essentially (i) to
allow for extensive form payoff perturbations and (ii) to allow correlation
between the “trembles” at different information sets of the same player. We
can, and now will, loosen the definition of elaborations with independent
types to allow for the trembles to be correlated across different players.

An elaboration has personal types if each player’s payoffs depend only on
his own information about nature’s choice of version; the players’ infor-
mation need not be independent. Formally, an elaboration with personal
types must satisfy (i), (iii), and (iv) of the definition of an elaboration with
independent types, but the overall measure p on versions need not have the
product form.

Consider the game in Fig. 10."* In the subgame where players 1 and 3
have played R and r, players 1, 2, and 3 play a 2x 2 x 2 simultaneous move
game. Against any pair of independent strategies by 1 and 2, player 3 can
guarantee himself a payoff of at least 0 in this subgame by playing a 50-50
mixture of 4 and B, so d is never part of any (normal form) perfect
equilibrium of the game. Hence in any normal form perfect equilibrium of
the game, 1 and 3 choose R and r, respectively. The subgame must
lie along the equilibrium path in any perfect equilibrium, and in the
subgame 1 and 2 have unique equilibrium strategies. (They play matching
pennies no matter what 3 does.) Hence 3’s best choice is 4. That is, this
game has a unique (normal form) perfect equilibrium, namely
(R, r, A,0.5H +0.5T, 0.5h + 0.5t). Perturbing the extensive form payoffs
will not affect this; hence this is the unique equilibrium that is strict under
elaborations with independent types.

But now consider elaborations with personal types. In particular,
imagine that there are two other types of players 1 and 2. In the first other
types of player 1, RH is a dominant strategy. (We refer to this as type RH.)
In the second other type of player 1, RT is dominant. For player 2, there is
a type for which 4 is dominant and a type for which 7 is dominant. Each
player learns only his own type, so, in particular, player 3 learns nothing at
all. And, what is crucial to our construction, the probability measure u is
such that there is high probability, say 1 — 24, that all players are of the
“standard” types, probability & that 1 is type RH and 2 is type h, and
probability J that 1 is type RT and 2 is type ¢. (If the reader does not like
this perfect correlation in the types of 1 and 2, it will suffice to have high
but less than perfect correlation.) Now consider the Nash equilibrium out-
come (L, d, A, 0.5H +0.5T, 0.5k + 0.5¢) in the original game. It is Nash
because d by 3 engenders L by 1, and 3 can do anything he wishes, as L by

13 This game is a variation on a similar game suggested to us by J.-F. Mertens. Myerson
[9] gives another example, making the same point.
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1 puts him off the equilibrium path.'* This equilibrium is made near strict if
we adopt the personal type elaborations above, for é approaching zero.
The intuitive argument runs as follows: Since 1 plays L in the main version,
the choice of R signals to 3 that some other version has been selected.
Given the prior u we posited, 3 sees it as equally likely that (i) 1 will follow
with H and 2 with A, and (ii) 1 will follow with T and 2 with . When 3
assesses this correlated continuation by 1 and 2, neither 4 nor B will
guarantee him a payoff above —0.5, and so 3 optimally chooses d. (Of
course, this choice by 3 validates 1’s choice of D in the main version.)

We advance this example and the general definitions to follow in the
following spirit. General elaborations may seem to the reader to be too
large a class of perturbation, because they allow one player to know more
about a second player’s payoffs than that second player knows herself. By
constraining ourselves to elaborations with the “type” structure, we sup-
pose that each player has all the information about his own payoffs that
any other player has. The further restiction to independent types implies
that no player learns anything about others’ types from his own. One might
imagine that players have “links” in their past—perhaps they went to the
same school, or had similar teachers when they learned game theory, or
whatever. Knowing that these links are possible, one suspects that knowing
something about the payoffs of one player might tell you something about
payoffs of another. This is true, pari pasu, of players within a game, which
leads to personal, but not independent, types.

Although it does not lead to quite the same thing, we can give another
perspective on this sort of elaboration. By analyzing the game non-
cooperatively and by restricting to Nash equilibria, one is supposing that
players cannot access correlating devices, as defined in Aumann [1] (see
also Forges [2] and Myerson [9]). Suppose that a more accurate
statement of the outside analyst’s state of knowledge is that while he is
fairly certain that players do not have access to correlating devices, he is
not completely certain of this. Then an appropriate perturbations of the
game would be an elaboration with personal types, where the utility
functions of the players in each version are close to (or perhaps even iden-
tical with) their payoffs in the game modelled. (In the example given in
Fig. 10, even if players 1 and 2 had access to a correlating device, the fact
that they play matching pennies in the subgame means that the device will
be of no use to them. But if we change the subgame so that it is a game of
coordination, then they might well use a correlating device if one is
available. And if player 3 is unable to observe the outcome generated by

14 Readers may fill in subsequent moves in any way they wish, and we will still have a Nash
equilibrium. We have filled them in with the subgame perfect equilibrium strategies for a
reason that will become apparent momentarily.
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FIGURE 10

the correlating device, then he might choose d at his information set, afraid
that 1’s choice of R indicates that 1 and 2 have obtained access to the
correlating device and will play a correlated equilibrium.) The point is that
a low prior probability that players can access correlating devices may
become a high posterior probability, if one observes an out-of-equilibrium
action from one or more of the players.

To characterize the set of near strict equilibria under elaborations with
personal types, we introduce the following definition, which may be of
independent interest. The idea is to modify trembling hand perfection, to
allow for “correlated trembles.”

DEFINITIONS.  Fix a pure strategy profile ¢ for a normal form game.
A sequence {{¢*}/_,}=_,, where for each i and £, ¢* is a totally mixed
distribution over the pure strategy profiles of players other than i, is a
c-perfect test sequence for a, if for each i, ¢*(c) = 1. A pure strategy profile
o of a normal form game y is c-perfect if there exists a c-perfect test
sequence {{#*}} for o such that for each player i and index k, o, is a best
response to ¢*. The equilibrium is strictly c-perfect if each o, is a strict best
response in the normal form.

Remarks. Note that the distributions ¢% need not correspond
to independently mixed strategies by the players. Also, perfection and
c-perfection are identical for the case of two-player games.

PROPOSITION 6. If an equilibrium o is strictly c-perfect, then it is near
strict with respect to elaborations in personal types.

Proof. Let ¢* be the c-perfect test sequence that makes o strictly c-per-
fect. We construct elaborations (for k=1, 2, ...) that are composed of two
kinds of versions of the original game: There will be a “main” version of
the game in which players are all sane, having the payoffs given in the
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original game. And there will be one version of the game for every pair
(i, ¢’_,), where i runs over all the players and o’_, over the pure strategy
combinations for the other players. In the (i, ¢”_;) version, player { will have
the payoffs given in the original game, and the other players will have
payoffs that make the constituent parts of __; dominant as in our previous
constructions. In each elaboration, player i is told whether he is “sane” or
not and, if he is not, what his payoffs are. This then meets the requirements
for an elaboration in private types.

To specify the kth elaboration, it remains to specify the probabilities of
the various versions. We will assign probabilities so that, in elaboration k,
~ the probability of the main version is 1 —ne; (for some ¢, >0 to be deter-
mined in a bit) and the marginal probability of all versions in which i is
sane and the others not will be ¢,. More precisely, we will use pr(i, o)) &
to denote the probability of the (i, ¢";) version; that is, p*(i, o’_;) is the
conditional probability of crazy types o’_;, conditional on i being sane and
the others crazy.

Suppose that, in elaboration k, players all play according to ¢ when they
are sane and according to their dominant strategies when not. Then con-
ditional on i being sane, the probability that i assess that this opponents
will play ¢’_; is

(1—ne) L, _,  +ep(ia"))

i

1—(n—1)¢

where I denotes the indicator function. The numerator in this expression is
the joint probability that everyone is sane and others play ¢’_; (which is
nonzero only if ¢’_,=0c_,), plus the probability that only player i is sane
and the others play ¢’_;; the denominator is the marginal probability that i
is sane. We will want this to equal ¢*(¢"_;), which, solving for pr(i, o)),
yields

o) —(1—me)(1=(n1=1)&)
Pio-)= e/ (1= (n—1)2¢)

and, for ¢’_;#0_,,

.oy ¢i(a’_))
PO ) = T (=) 2)

To ensure that p*(i, 6,) >0, we must have that

1—ns
g ) > —————,
¢l(6—l) 1—(n—1)8k
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That is, we must have

1 "¢f(0—i)
S =1 9K )

So if we choose ¢, >0 to be less than or equal to the minimum (over i) of
the terms in the right-hand side of the previous inequality, and use ¢* to
specify the p* as above, the elaboration is well defined. By construction, we
see immediately that ¢ is strict in each elaboration k. And since Pk
is a c-perfect test sequence, ¢*(c_;)— 1, implying that g, —0, so the
elaborations converge to the original game. Q.E.D.

Finally, we have a converse to Proposition 6, exactly parallel to our
converse to Proposition 4.

DEFINITION.  An equilibrium ¢ of an extensive form game E with payoffs
u is quasi-c-perfect if there exists a sequence of payoffs u* - u such that g is
strictly c-perfect in the corresponding normal form games.

PROPOSITION 7. An equilibrium o of an extensive form game is quasi-c-
perfect if and only if it is near strict in elaborations with independent types.

The proof is just as in the proof of Proposition 5, except that Mg* ;
is replaced, for each i, by the conditional distribution of the others,
conditional on i being the first type.
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