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Introduction

“If any one bring an accusation against a man, and the accused go to
the river and leap into the river, if he sink in the river his accuser shall
take possession of his house. But if the river prove that the accused is
not guilty, and he escape unhurt, then he who had brought the
accusation shall be put to death, while he who leaped into the river
shall take possession of the house that had belonged to his accuser.”
[2nd law of Hammurabi]

puzzling to modern sensibilities for two reasons

♦ based on a superstition that we do not believe to be true – we do not
believe that the guilty are any more likely to drown than the innocent

♦ if people can be easily persuaded to hold a superstitious belief, why
such an elaborate mechanism? Why not simply assert that those who
are guilty will be struck dead by lightning?
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we attack these puzzles from the perspective of the theory of learning
in games; use a model from our 1993 “Steady State Learning” paper

♦ partial characterization of patiently stable outcomes that arise as the
limit of steady states with rational learning as players become more
patient

♦ leads to a refinement of Nash equilibrium which also have self-
confirming beliefs at certain information sets reachable by a single
deviation

♦ which superstitions survive this refinement?

♦ according to this theory Hammurabi had it exactly right: his law uses
the greatest amount of superstition consistent with patient rational
learning
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Overview of the Model

♦ society consists of overlapping generations of finitely lived players

♦ indoctrinated into the social norm as children “if you commit a crime
you will be struck by lightning”

♦ enter the world as young adults with prior beliefs that the social norm
is true

♦ being young and relatively patient, having some residual doubt about
the truth of what they were taught, and being rational Bayesians,
young players optimally decide to commit a few crimes to see what
will happen
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lightning-strike norm
♦ most young players discover that the chances of being struck by

lightning are independent of whether they commit crimes, and so go
on to a life of crime, thereby undermining the norm

Hammurabi case
♦ the social norm is to not commit crimes; to only accuse the guilty; and

to jump in the river when accused of a crime

♦ young players commit crimes, are accused of crimes, jump in the
river and are punished; they learn that crime does not pay, and as
they grow older stop committing crimes
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what about young accusers?

♦ will they experiment with false accusations, and learn that the river is
as likely to punish the innocent as the guilty?

♦ accusers only get to play the game after a crime takes place

♦ there are few crimes, hence accusers only get to play infrequently

♦ infrequent play reduces the option value of experimentation because
there will likely be a long delay before the knowledge gained can be
put to use – hence no experimentation once off the equilibrium path



6

The Hammurabi Games

Example 2.1: The Hammurabi Game

Player 1 is a suspect; player 2 an accuser

1 2

N

N

crime
truth

lie

(0,0) (B-P,-C)

(B,-C-P)

(B,B-C)

(B,B-C-P)
1-p
p

p
1-p

exit
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#  social cost of the crime

benefit to accuser of a false accusation, or lie, "  the same as the
benefit of the crime to the suspect

the cost of punishment 0  same for both

assume that " P0�  so probability of punishment sufficient to deter
crime
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Example 2.2: The Hammurabi Game Without a River

1 2crime
truth

lie

(0,0)

(B-P,-C)

(B,B-C)

exit
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Example 2.3: The Lightning Game

1

N

N

exit

crime

-P

0

B-P

B
1-p
p

p
1-p
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configurations in which there is no crime

Hammurabi game (Nash, but wrong beliefs about off-off path play)

♦ accuser tells the truth because he believes that if he lies he will be
punished with probability 1

Hammurabi game without a river (Nash, but not off-path rational)

♦ accuser tells the truth,  and is indifferent (ex ante, not ex post)

lightning game (self-confirming, but not Nash)

♦ everyone believes that if they commit a crime they will be punished
with probability 1, and that if they exit they will be punished with
probability P



11

Simple Games

a simple game

♦ perfect information (each information set is a singleton node)

♦ each player has at most one information set on each path through
the tree. (may have more than one information set, but once he has
moved, he never gets to move again)
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no own ties

will use a generic “no-tie” condition

no ties at all rules out the Hammurabi game with a river: the suspect
only cares whether he is punished or not, and there are a number of
ways he may fail to be punished

no player has two different actions at an information set that can
possibly result in a tie in his own payoff

in Hammurabi: the ties are for the suspect, but all occur when he
chooses to commit a crime, so two distinct own actions are not involved

no own ties implies that a player playing in the final stage of the game
has a unique best choice, and by backwards induction, every perfect
information game with no own ties has a unique subgame perfect
equilibrium
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The Model

nodes in game tree X 8� , terminal nodes Z : 8� �

feasible actions at information sets � 	! X

pure strategies I IS 3�  , mixed IT , the state is R  a mixed profile
interpreted as fraction of population playing different pure strategies

payoffs �IU : l }

)  players plus Nature ( �) � )

Nature plays a fixed and given mixed strategy �
�)T �

reachable nodes � 	I: S , � 	I8 S , � 	I8 T

nodes reached � 	8 T  (the “equilibrium path”)

behavior strategies IQ
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beliefs about his opponents’ play

IN  a probability measure over I�1 , the set of other players’ behavior
strategies

beliefs are independent: players do not believe that there is a
correlation between how an opponent plays at different information
sets, or how different opponents play

� \ 	I IP X N  marginal induced by beliefs

preferences:

� 	

� � 	 � � � \ 		 � \ 	 � 	
I

I I I I I I I I I I
Z : S

U S U S P P Z U ZN N N
�

w ¸ w � .

when IN  is has a continuous density IG  we write � \ 	� � � 	I I I I IP X G U S G .
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Subgame Confirmed Nash Equilibrium

Definition 4.1 :  R  is a  self-confirming equilibrium if  for each player I
and for each IS  with � 	 �I ISR �  there are beliefs � 	I ISN  such that

(a) IS  is a best response � 	I ISN  and

(b) � 	I ISN  is correct at every � � 	I IX 8 S Q�� ,

.

Note also that Nash equilibrium strengthens (b) to hold at all
information sets.
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Definition 4.2: In a simple game, node X  is one step off the path of Q  if
it is an immediate successor of a node that is reached with positive
probability under Q . Profile Q   is a subgame-confirmed Nash
equilibrium if it is a Nash equilibrium and if, in each subgame beginning
one step off the path, the restriction of Q  to the subgame is self-
confirming in that subgame.
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In a simple game with no more than two consecutive moves, self-
confirming equilibrium for any player moving second implies optimal
play by that player, so subgame-confirmed Nash equilibrium implies
subgame perfection.

can fail when there are three consecutive moves.
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Example 4.1: The Three Player Centipede Game

unique subgame-perfect equilibrium: all players to pass

(pass, drop, pass)  is subgame-confirmed

1

2

3

drop (1,0,0)

(0,1,0)

(0,0,1)

(2,2,2)

drop

drop

pass

pass

pass
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subgame-confirmed Nash equilibrium is not equivalent to the
requirement that the profile yield a Nash equilibrium at every node that
is one step off of the path.
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Example 4.2 The Four-player Centipede Game

1

2

3

4

drop (4,2,1,2)

(7,5,3,5)

(0,4,5,4)

(2,3,4,3)

(6,8,6,8)

drop

drop

drop

pass

pass

pass

pass(50%)

(50%)
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red is subgame confirmed

subgame-confirmed Nash equilibrium in which player 1 drops out,
player 3 must randomize

“red” equilibrium with player 3 randomizing 50-50 not path equivalent to
to equilibrium with Nash play at all nodes at most one step off of the
path of play

self-confirming equilibria of the subgame starting with player 2’s move
that are consistent with player 1 dropping require player 3 to
randomize.

conflict between player 1’s and player 2’s incentive constraints

for both to play as specified, player 3 must randomize

in a Nash equilibrium of subgame starting with 2’s move, if player 2
passes and player 3 randomizes, player 4 must pass,  so 3 must pass
with probability 1
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Rational Steady-State Learning

The Agent’s Decision Problem
 “agent” in the role of player i expects to play game 4  times wishes to
maximize

�

�

�
�

4
T

T4
T

% U
E

E
E

�

�

�
� �

TU  realized stage game payoff

agent believes that he faces a fixed time invariant probability
distribution of opponents’ strategies, unsure what the true distribution is

Definition 5.1: Beliefs IN  are non-doctrinaire if IN  is given by a
continuous density function IG  strictly positive at interior points.

Note that allow priors can go to zero on the boundary, as is the case for
many Dirichlet priors
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assume non-doctrinaire prior �
IG

� \ 	IG Z¸  posterior starting with prior IG  after Z  is observed

agents are assumed to play optimally

(dynamic programming problem defined in the paper)

histories are I9

optimal policy a map �I I IR 9 3l   (may be several)
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Steady States in an Overlapping generations model

♦ a continuum population

♦ doubly infinite sequence of periods

♦ generations overlap

♦ ��4  players in each generation

♦ ��4  enter to replace the ��4  player who leave

♦ each agent is randomly and independently matched with one agent
from each of the other populations

each population assumed to use a common optimal rule IR
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given population fractions of each population playing pure strategies
� 	I ISR

Using R  we work out the fraction of the population with each experience
� 	I YR

then recompute the fractions playing different strategies

][ \ � 	

; =� 	 � 	
I I I I

I I I I
Y R Y S

F S YR R
�

� �

This is a polynomial map from the space of mixed strategy profiles to
itself

a fixed point exists, and these fixed points are steady states.
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Patient Stability

 a sequence of steady states  LIM 4
4 R Rld l  we say that R  is a ��G E -

stable state

 If � 	R E  are ��G E -stable states and �LIM � 	E R E Rl l , we say that R  is a
patiently stable state.   

Theorem 5.1:  (Fudenberg and Levine [1993b]) ��G E -steady states are
self-confirming; patiently stable states are Nash.
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Patient Stability in Simple Games

two profiles �R Ra  are path equivalent if they induce the same
distribution over terminal nodes.

Theorem: In a simple game, a patiently stable state R  is path
equivalent to a  subgame-confirmed Nash  equilibrium.

corollary of a more general theorem proven in another paper; note that
it is straightforward to show that a patiently stable state in a simple
game must be Nash in weakly undominated strategies, which
eliminates the “bad equilibrium” in Hammurabi without the river

key result of this paper is a converse for simple games
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important for the Hammurabi games

♦ shows that without the river, the crime-free equilibrium is not patiently
stable

♦ however this can be shown by more elementary methods

♦ telling the truth is weakly dominated and generates no useful
information; with non-doctrinaire beliefs it is not played in any steady
state

♦ hence not played in the limit; but it is not a Nash equilibrium for
player 1 to exit when player 2 is not telling the truth
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a profile is nearly pure if Nature does not randomize on the equilibrium
path, and no player except Nature randomizes off the equilibrium path

our proposed Hammurabi game profile is nearly pure – only Nature
randomizes, and only off the equilibrium path

Theorem: In simple games with no own ties, a subgame-confirmed
Nash equilibrium that is nearly pure is path equivalent to a patiently
stable state.

This answers the Hammurabi puzzle: the Hammurabi equilibrium with
the river is patiently stable; without the river it is not, nor is the lightning
equilibrium stable
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Games with Length at Most Three

a game has “length at most three” if no path through the tree hits more
than three information sets

Theorem In simple games with no own ties, no Nature’s move and
length at most three, a subgame-confirmed Nash equilibrium is path
equivalent to a patiently stable state.

because in these games all equilibria are nearly pure

Lemma: In simple games with no own ties, no Nature’s move and
length at most three, a subgame-confirmed Nash equilibrium is path
equivalent to a subgame-confirmed Nash equilibrium in which players
play pure strategies.

in turn follows from

Lemma: In simple games with no own ties, no Nature’s move and
length at most two, every self confirming equilibrium is path equivalent
to a public randomization over Nash equilibria.


